Freigeben über


Kopieren von Daten aus Google Cloud Storage mit Azure Data Factory oder Synapse Analytics

GILT FÜR: Azure Data Factory Azure Synapse Analytics

Tipp

Testen Sie Data Factory in Microsoft Fabric, eine All-in-One-Analyselösung für Unternehmen. Microsoft Fabric deckt alle Aufgaben ab, von der Datenverschiebung bis hin zu Data Science, Echtzeitanalysen, Business Intelligence und Berichterstellung. Erfahren Sie, wie Sie kostenlos eine neue Testversion starten!

In diesem Artikel wird beschrieben, wie Sie Daten von Google Cloud Storage (GCS) kopieren. Wenn Sie mehr erfahren möchten, lesen Sie die Einführungsartikel zu Azure Data Factory und Synapse Analytics.

Unterstützte Funktionen

Dieser Google Cloud Storage Connector wird für die folgenden Funktionen unterstützt:

Unterstützte Funktionen IR
Kopieraktivität (Quelle/-) ① ②
Zuordnungsdatenfluss (Quelle/–)
Lookup-Aktivität ① ②
GetMetadata-Aktivität ① ②
Delete-Aktivität ① ②

① Azure Integration Runtime ② Selbstgehostete Integration Runtime

Der Google Cloud Storage-Connector unterstützt insbesondere das Kopieren von Dateien im jeweiligen Zustand oder Analysieren von Dateien mit den unterstützten Dateiformaten und Codecs für die Komprimierung. Er nutzt die S3-kompatible Interoperabilität von GCS.

Voraussetzungen

Für Ihr Google Cloud Storage-Konto ist folgendes Setup erforderlich:

  1. Aktivieren der Interoperabilität für Ihr Google Cloud Storage-Konto
  2. Festlegen des Standardprojekts, das die Daten enthält, die Sie aus dem Ziel-GCS-Bucket kopieren möchten
  3. Erstellen eines Dienstkontos und Definieren der richtigen Berechtigungsebenen mithilfe von Cloud IAM auf GCP
  4. Generieren der Zugriffsschlüssel für dieses Dienstkonto

Abrufen des Zugriffsschlüssels für Google Cloud Storage

Erforderliche Berechtigungen

Sie müssen zum Kopieren von Daten aus Google Cloud Storage sicherstellen, dass Ihnen die folgenden Berechtigungen für Objektvorgänge erteilt wurden: storage.objects.get und storage.objects.list

Wenn Sie die Benutzeroberfläche als Autor verwenden, ist eine zusätzliche storage.buckets.list-Berechtigung für Vorgänge wie das Testen der Verbindung zum verknüpften Dienst und das Durchsuchen vom Stammverzeichnis aus erforderlich. Wenn Sie diese Berechtigung nicht erteilen möchten, können Sie die Optionen „Test connection to file path“ (Verbindung mit Dateipfad testen) bzw. „Browse from specified path“ (Von angegebenem Pfad suchen) auf der Benutzeroberfläche auswählen.

Eine vollständige Liste der Google Cloud Storage-Rollen und zugehöriger Berechtigungen finden Sie unter IAM-Rollen für Cloud Storage auf der Google Cloud-Website.

Erste Schritte

Sie können eines der folgenden Tools oder SDKs verwenden, um die Kopieraktivität mit einer Pipeline zu verwenden:

Erstellen eines verknüpften Diensts für Google Cloud Storage über die Benutzeroberfläche

Führen Sie die folgenden Schritte aus, um über die Benutzeroberfläche des Azure-Portals einen verknüpften Dienst für Google Cloud Storage zu erstellen.

  1. Navigieren Sie in Ihrem Azure Data Factory- oder Synapse-Arbeitsbereich zur Registerkarte „Verwalten“, wählen Sie „Verknüpfte Dienste“ aus, und klicken Sie dann auf „Neu“:

  2. Suchen Sie nach Google, und wählen Sie den Connector „Google Cloud Storage (S3 API)“ aus.

    Auswählen des Connectors „Google Cloud Storage (S3 API)“

  3. Konfigurieren Sie die Dienstdetails, testen Sie die Verbindung, und erstellen Sie den neuen verknüpften Dienst.

    Konfigurieren eines verknüpften Diensts für Google Cloud Storage

Details zur Connectorkonfiguration

Die folgenden Abschnitte enthalten Details zu Eigenschaften, die zum Definieren von Google Cloud Storage-spezifischen Data Factory-Entitäten verwendet werden.

Eigenschaften des verknüpften Diensts

Folgende Eigenschaften werden für mit Google Cloud Storage verknüpfte Dienste unterstützt:

Eigenschaft Beschreibung Erforderlich
type Die type-Eigenschaft muss auf GoogleCloudStorage festgelegt werden. Ja
accessKeyId ID des geheimen Zugriffsschlüssels. Informationen zum Ermitteln des Zugriffsschlüssels und des Geheimnisses finden Sie unter Voraussetzungen. Ja
secretAccessKey Der geheime Zugriffsschlüssel selbst. Markieren Sie dieses Feld als einen SecureString, um es sicher zu speichern, oder verweisen Sie auf ein in Azure Key Vault gespeichertes Geheimnis. Ja
serviceUrl Geben Sie den benutzerdefinierten GCS-Endpunkt als https://storage.googleapis.com an. Ja
connectVia Die Integration Runtime, die zum Herstellen einer Verbindung mit dem Datenspeicher verwendet werden soll. Sie können die Azure Integration Runtime oder eine selbstgehostete Integration Runtime verwenden (sofern sich Ihr Datenspeicher in einem privaten Netzwerk befindet). Wenn diese Eigenschaft nicht angegeben ist, verwendet der Dienst die normale Azure Integration Runtime. Nein

Hier sehen Sie ein Beispiel:

{
    "name": "GoogleCloudStorageLinkedService",
    "properties": {
        "type": "GoogleCloudStorage",
        "typeProperties": {
            "accessKeyId": "<access key id>",
            "secretAccessKey": {
                "type": "SecureString",
                "value": "<secret access key>"
            },
            "serviceUrl": "https://storage.googleapis.com"
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

Dataset-Eigenschaften

Azure Data Factory unterstützt die folgenden Dateiformate. Informationen zu formatbasierten Einstellungen finden Sie in den jeweiligen Artikeln.

Folgende Eigenschaften werden für Google Cloud Storage unter location-Einstellungen in einem formatbasierten Dataset unterstützt:

Eigenschaft Beschreibung Erforderlich
type Die type-Eigenschaft unter location im Dataset muss auf GoogleCloudStorageLocation festgelegt werden. Ja
bucketName Der Name des GCS-Buckets. Ja
folderPath Der Pfad zum Ordner unter dem angegebenen Bucket. Wenn Sie einen Platzhalter verwenden möchten, um den Ordner zu filtern, überspringen Sie diese Einstellung, und geben Sie entsprechende Aktivitätsquelleneinstellungen an. Nein
fileName Der Name der Datei unter dem angegebenen Bucket und Ordnerpfad. Wenn Sie einen Platzhalter verwenden möchten, um die Dateien zu filtern, überspringen Sie diese Einstellung, und geben Sie entsprechende Aktivitätsquelleneinstellungen an. Nein

Beispiel:

{
    "name": "DelimitedTextDataset",
    "properties": {
        "type": "DelimitedText",
        "linkedServiceName": {
            "referenceName": "<Google Cloud Storage linked service name>",
            "type": "LinkedServiceReference"
        },
        "schema": [ < physical schema, optional, auto retrieved during authoring > ],
        "typeProperties": {
            "location": {
                "type": "GoogleCloudStorageLocation",
                "bucketName": "bucketname",
                "folderPath": "folder/subfolder"
            },
            "columnDelimiter": ",",
            "quoteChar": "\"",
            "firstRowAsHeader": true,
            "compressionCodec": "gzip"
        }
    }
}

Eigenschaften der Kopieraktivität

Eine vollständige Liste mit den Abschnitten und Eigenschaften zum Definieren von Aktivitäten finden Sie im Artikel Pipelines. Dieser Abschnitt enthält eine Liste der Eigenschaften, die von der Google Cloud Storage-Quelle unterstützt werden.

Google Cloud Storage als Quelle

Azure Data Factory unterstützt die folgenden Dateiformate. Informationen zu formatbasierten Einstellungen finden Sie in den jeweiligen Artikeln.

Folgende Eigenschaften werden für Google Cloud Storage unter storeSettings-Einstellungen in einer formatbasierten Kopierquelle unterstützt:

Eigenschaft Beschreibung Erforderlich
type Die type-Eigenschaft unter storeSettings muss auf GoogleCloudStorageReadSettings festgelegt werden. Ja
Suchen Sie die zu kopierenden Dateien:
OPTION 1: statischer Pfad
Kopieren Sie aus dem im Dataset angegebenen Bucket oder Ordner/Dateipfad. Wenn Sie alle Dateien aus einem Bucket oder Ordner kopieren möchten, geben Sie zusätzlich für wildcardFileName den Wert * an.
OPTION 2: GCS-Präfix
– prefix
Präfix für den GCS-Schlüsselnamen unter dem angegebenen Bucket, konfiguriert im Dataset zum Filtern von GCS-Dateien. Es werden die GCS-Schlüssel ausgewählt, deren Namen mit bucket_in_dataset/this_prefix beginnen. Es wird der dienstseitige Filter von GCS verwendet, dessen Leistung im Vergleich zu Platzhalterfiltern besser ist. Nein
OPTION 3: Platzhalter
– wildcardFolderPath
Der Ordnerpfad mit Platzhalterzeichen unter dem angegebenen Bucket, der in einem Dataset für das Filtern von Quellordnern konfiguriert ist.
Folgende Platzhalter sind zulässig: * (entspricht null [0] oder mehr Zeichen) und ? (entspricht null [0] oder einem einzelnen Zeichen). Verwenden Sie ^ als Escapezeichen, wenn Ihr Ordnername einen Platzhalter oder dieses Escapezeichen enthält.
Weitere Beispiele finden Sie unter Beispiele für Ordner- und Dateifilter.
Nein
OPTION 3: Platzhalter
– wildcardFileName
Der Dateiname mit Platzhalterzeichen unter dem angegebenen Bucket und Ordnerpfad (oder Platzhalterordnerpfad) für das Filtern von Quelldateien.
Folgende Platzhalter sind zulässig: * (entspricht null [0] oder mehr Zeichen) und ? (entspricht null [0] oder einem einzelnen Zeichen). Verwenden Sie ^ als Escapezeichen, wenn der tatsächliche Dateiname einen Platzhalter oder dieses Escapezeichen enthält. Weitere Beispiele finden Sie unter Beispiele für Ordner- und Dateifilter.
Ja
OPTION 3: eine Liste von Dateien
– fileListPath
Gibt an, dass eine bestimmte Dateigruppe kopiert werden soll. Verweisen Sie auf eine Textdatei, die eine Liste der zu kopierenden Dateien enthält, und zwar eine Datei pro Zeile. Dies ist der relative Pfad zu dem im Dataset konfigurierten Pfad.
Wenn Sie diese Option verwenden, geben Sie keinen Dateinamen im Dataset an. Weitere Beispiele finden Sie unter Beispiele für Dateilisten.
Nein
Zusätzliche Einstellungen:
recursive Gibt an, ob die Daten rekursiv aus den Unterordnern oder nur aus dem angegebenen Ordner gelesen werden. Beachten Sie Folgendes: Wenn recursive auf TRUE festgelegt ist und es sich bei der Senke um einen dateibasierten Speicher handelt, wird ein leerer Ordner oder Unterordner nicht in die Senke kopiert und dort auch nicht erstellt.
Zulässige Werte sind true (Standard) und false.
Diese Eigenschaft gilt nicht, wenn Sie fileListPath konfigurieren.
Nein
deleteFilesAfterCompletion Gibt an, ob die Binärdateien nach dem erfolgreichen Verschieben in den Zielspeicher aus dem Quellspeicher gelöscht werden. Die Dateien werden einzeln gelöscht, sodass Sie bei einem Fehler der Kopieraktivität feststellen werden, dass einige Dateien bereits ins Ziel kopiert und aus der Quelle gelöscht wurden, wohingegen sich andere weiter im Quellspeicher befinden.
Diese Eigenschaft ist nur im Szenario zum Kopieren von Binärdateien gültig. Standardwert: FALSE.
Nein
modifiedDatetimeStart Die Dateien werden anhand des Attributs „Letzte Änderung“ gefiltert.
Die Dateien werden ausgewählt, wenn der Zeitpunkt ihrer letzten Änderung größer als oder gleich modifiedDatetimeStart und kleiner als modifiedDatetimeEnd ist. Die Zeit wird auf die UTC-Zeitzone im Format „2018-12-01T05:00:00Z“ angewandt.
Die Eigenschaften können NULL sein, was bedeutet, dass kein Dateiattributfilter auf das Dataset angewendet wird. Wenn modifiedDatetimeStart einen datetime-Wert aufweist, aber modifiedDatetimeEndNULL ist, werden die Dateien ausgewählt, deren Attribut für die letzte Änderung größer oder gleich dem datetime-Wert ist. Wenn modifiedDatetimeEnd den datetime-Wert aufweist, aber modifiedDatetimeStartNULL ist, werden die Dateien ausgewählt, deren Attribut für die letzte Änderung kleiner als der datetime-Wert ist.
Diese Eigenschaft gilt nicht, wenn Sie fileListPath konfigurieren.
Nein
modifiedDatetimeEnd Wie oben. Nein
enablePartitionDiscovery Geben Sie bei partitionierten Dateien an, ob die Partitionen anhand des Dateipfads analysiert und als zusätzliche Quellspalten hinzugefügt werden sollen.
Zulässige Werte sind false (Standard) und true.
Nein
partitionRootPath Wenn die Partitionsermittlung aktiviert ist, geben Sie den absoluten Stammpfad an, um partitionierte Ordner als Datenspalten zu lesen.

Ohne Angabe gilt standardmäßig Folgendes:
- Wenn Sie den Dateipfad im Dataset oder die Liste der Dateien in der Quelle verwenden, ist der Partitionsstammpfad der im Dataset konfigurierte Pfad.
Wenn Sie einen Platzhalterordnerfilter verwenden, ist der Stammpfad der Partition der Unterpfad vor dem ersten Platzhalter.

Angenommen, Sie konfigurieren den Pfad im Dataset als „root/folder/year=2020/month=08/day=27“:
- Wenn Sie den Stammpfad der Partition als „root/folder/year=2020“ angeben, generiert die Kopieraktivität zusätzlich zu den Spalten in den Dateien die beiden weiteren Spalten month und day mit den Werten „08“ bzw. „27“.
- Wenn kein Stammpfad für die Partition angegeben ist, wird keine zusätzliche Spalte generiert.
Nein
maxConcurrentConnections Die Obergrenze gleichzeitiger Verbindungen mit dem Datenspeicher während der Aktivitätsausführung. Geben Sie diesen Wert nur an, wenn Sie die Anzahl der gleichzeitigen Verbindungen begrenzen möchten. Nein

Beispiel:

"activities":[
    {
        "name": "CopyFromGoogleCloudStorage",
        "type": "Copy",
        "inputs": [
            {
                "referenceName": "<Delimited text input dataset name>",
                "type": "DatasetReference"
            }
        ],
        "outputs": [
            {
                "referenceName": "<output dataset name>",
                "type": "DatasetReference"
            }
        ],
        "typeProperties": {
            "source": {
                "type": "DelimitedTextSource",
                "formatSettings":{
                    "type": "DelimitedTextReadSettings",
                    "skipLineCount": 10
                },
                "storeSettings":{
                    "type": "GoogleCloudStorageReadSettings",
                    "recursive": true,
                    "wildcardFolderPath": "myfolder*A",
                    "wildcardFileName": "*.csv"
                }
            },
            "sink": {
                "type": "<sink type>"
            }
        }
    }
]

Beispiele für Ordner- und Dateifilter

Dieser Abschnitt beschreibt das sich ergebende Verhalten für den Ordnerpfad und den Dateinamen mit Platzhalterfiltern.

bucket Schlüssel recursive Quellordnerstruktur und Filterergebnis (Dateien mit Fettformatierung werden abgerufen.)
bucket Folder*/* false bucket
    FolderA
        Datei1.csv
        File2.json
        Unterordner1
            File3.csv
            File4.json
            File5.csv
    AndererOrdnerB
        Datei6.csv
bucket Folder*/* true bucket
    FolderA
        Datei1.csv
        File2.json
        Unterordner1
            File3.csv
            File4.json
            File5.csv
    AndererOrdnerB
        Datei6.csv
bucket Folder*/*.csv false bucket
    FolderA
        Datei1.csv
        Datei2.json
        Unterordner1
            File3.csv
            File4.json
            File5.csv
    AndererOrdnerB
        Datei6.csv
bucket Folder*/*.csv true bucket
    FolderA
        Datei1.csv
        Datei2.json
        Unterordner1
            File3.csv
            File4.json
            File5.csv
    AndererOrdnerB
        Datei6.csv

Beispiele für Dateilisten

In diesem Abschnitt wird das resultierende Verhalten beschrieben, wenn ein Dateilistenpfad in der Quelle einer Kopieraktivität verwendet wird.

Angenommen, Sie haben die folgende Quellordnerstruktur und möchten die Dateien kopieren, deren Namen fett formatiert sind:

Beispielquellstruktur Inhalt in „FileListToCopy.txt“ Konfiguration
bucket
    FolderA
        Datei1.csv
        Datei2.json
        Unterordner1
            File3.csv
            File4.json
            File5.csv
    Metadaten
        FileListToCopy.txt
Datei1.csv
Unterordner1/Datei3.csv
Unterordner1/Datei5.csv
Im Dataset:
– Bucket: bucket
– Ordnerpfad: FolderA

In der Quelle der Kopieraktivität:
– Dateilistenpfad: bucket/Metadata/FileListToCopy.txt

Der Dateilistenpfad verweist auf eine Textdatei im selben Datenspeicher, der eine Liste der zu kopierenden Dateien enthält, und zwar eine Datei pro Zeile. Diese enthält den relativen Pfad zu dem im Dataset konfigurierten Pfad.

Eigenschaften von Mapping Data Flow

Wenn Sie Daten in Zuordnungsdatenflüsse transformieren, können Sie Dateien aus Google Cloud Storage in den folgenden Formaten lesen:

Formatspezifische Einstellungen finden Sie in der Dokumentation für das jeweilige Format. Weitere Informationen finden Sie im Artikel zur Quelltransformation im Zuordnungsdatenfluss.

Quellentransformation

Bei der Quelltransformation können Sie in Google Cloud Storage aus einem Container, Ordner oder einer einzelnen Datei lesen. Über die Registerkarte Source options (Quellenoptionen) können Sie verwalten, wie die Dateien gelesen werden.

Screenshot der Quelloptionen

Platzhalterpfade: Mithilfe eines Platzhaltermusters wird der Dienst angewiesen, die einzelnen übereinstimmenden Ordner und Dateien in einer einzigen Quelltransformation zu durchlaufen. Dies ist eine effektive Methode zur Verarbeitung von mehreren Dateien in einem einzigen Datenfluss. Über das Pluszeichen (+), das angezeigt wird, wenn Sie mit dem Cursor auf Ihr vorhandenes Platzhaltermuster zeigen, können Sie weitere Platzhaltermuster hinzufügen.

Wählen Sie in Ihrem Quellcontainer eine Reihe von Dateien aus, die einem Muster entsprechen. Es kann nur ein Container im Dataset angegeben werden. Daher muss Ihr Platzhalterpfad auch den Ordnerpfad des Stammordners enthalten.

Beispiele für Platzhalter:

  • *: stellt eine beliebige Zeichenfolge dar

  • **: stellt eine rekursive Verzeichnisschachtelung dar

  • ?: ersetzt ein Zeichen

  • []: stimmt mit mindestens einem Zeichen in den Klammern überein

  • /data/sales/**/*.csv: ruft alle CSV-Dateien unter „/data/sales“ ab

  • /data/sales/20??/**/: ruft alle Dateien aus dem 20. Jahrhundert ab

  • /data/sales/*/*/*.csv: ruft CSV-Dateien auf zwei Ebenen unter „/data/sales“ ab

  • /data/sales/2004/*/12/[XY]1?.csv: ruft alle CSV-Dateien von Dezember 2004 ab, die mit X oder Y und einer zweistelligen Zahl als Präfix beginnen

Partitionsstammpfad: Wenn Ihre Dateiquelle partitionierte Ordner mit dem Format key=value (z. B. year=2019) enthält, können Sie die oberste Ebene dieser Ordnerstruktur einem Spaltennamen im Datenstrom Ihres Datenflusses zuweisen.

Legen Sie zunächst einen Platzhalter fest, um darin alle Pfade, die die partitionierten Ordner sind, sowie die Blattdateien einzuschließen, die gelesen werden sollen.

Screenshot der Einstellungen der Partitionsquelledatei

Verwenden Sie die Einstellung Partition root path (Partitionsstammpfad), um zu definieren, was die oberste Ebene der Ordnerstruktur ist. Wenn Sie die Inhalte Ihrer Daten über die Datenvorschau anzeigen, sehen Sie, dass der Dienst die aufgelösten Partitionen hinzufügen wird, die auf Ihren einzelnen Ordnerebenen gefunden werden.

Screenshot der Partitionierungsoptionen

Liste der Dateien: Dies ist eine Dateigruppe. Erstellen Sie eine Textdatei mit einer Liste der relativen Pfade der zu verarbeitenden Dateien. Verweisen Sie auf diese Textdatei.

Spalte für die Speicherung im Dateinamen: Speichern Sie den Namen der Quelldatei in einer Spalte in den Daten. Geben Sie hier einen neuen Spaltennamen ein, um die Zeichenfolge für den Dateinamen zu speichern.

Nach der Fertigstellung: Wählen Sie aus, ob Sie nach dem Ausführen des Datenflusses nichts mit der Quelldatei anstellen, die Quelldatei löschen oder die Quelldateien verschieben möchten. Die Pfade für das Verschieben sind relative Pfade.

Um Quelldateien an einen anderen Speicherort nach der Verarbeitung zu verschieben, wählen Sie zuerst für den Dateivorgang die Option „Verschieben“ aus. Legen Sie dann das Quellverzeichnis („from“/„aus“) fest. Wenn Sie keine Platzhalter für Ihren Pfad verwenden, entspricht die Einstellung „from“ dem Quellordner.

Wenn Sie über einen Quellpfad mit Platzhalter verfügen, sieht Ihre Syntax ähnlich wie hier aus:

/data/sales/20??/**/*.csv

Geben Sie „from“ beispielsweise wie folgt an:

/data/sales

„To“ können Sie wie folgt angeben:

/backup/priorSales

In diesem Fall werden alle Dateien, die aus /data/sales erstellt wurden, in /backup/priorSales verschoben.

Hinweis

Die Dateivorgänge werden nur ausgeführt, wenn der Datenfluss anhand der Aktivität zum Ausführen des Datenflusses in einer Pipeline über eine Pipelineausführung ausgeführt wird (Debuggen der Pipeline oder Ausführung). Dateivorgänge werden nicht im Datenfluss-Debugmodus ausgeführt.

Nach der letzten Änderung filtern: Sie können einen Datumsbereich angeben, um die zu verarbeitenden Dateien nach der letzten Änderung zu filtern. Alle Datums-/Uhrzeitangaben erfolgen in UTC.

Eigenschaften der Lookup-Aktivität

Ausführliche Informationen zu den Eigenschaften finden Sie unter Lookup-Aktivität.

Eigenschaften der GetMetadata-Aktivität

Ausführliche Informationen zu den Eigenschaften finden Sie unter GetMetadata-Aktivität.

Eigenschaften der Delete-Aktivität

Ausführliche Informationen zu den Eigenschaften finden Sie unter Delete-Aktivität.

Legacy-Modelle

Wenn Sie einen Amazon S3-Connector zum Kopieren von Daten aus Google Cloud Storage verwenden, wird er für die Abwärtskompatibilität weiterhin unverändert unterstützt. Es wird empfohlen, das oben erwähnte neue Modell zu verwenden. Die Erstellungsbenutzeroberfläche für die Erstellung ist zum Generieren des neuen Modells gewechselt.

Eine Liste der Datenspeicher, die diese Kopieraktivität als Quellen und Senken unterstützt, finden Sie unter Unterstützte Datenspeicher.