Databricks Runtime 10.0 (EoS)
Hinweis
Die Unterstützung für diese Databricks-Runtime-Version wurde beendet. Den End-of-Support-Termin finden Sie im Verlauf des Supportendes. Alle unterstützten Versionen von Databricks Runtime finden Sie unter Versionshinweise, Versionen und Kompatibilität von Databricks Runtime.
Die folgenden Versionshinweise enthalten Informationen zu Databricks Runtime 10.0 und Databricks Runtime 10.0 Photon, unterstützt von Apache Spark 3.2.0. Diese Version wurde von Databricks im Oktober 2021 veröffentlicht. Photon ist als Public Preview verfügbar.
Neue Features und Verbesserungen
- Neue Version von Apache Spark
- SELECT-Anweisung unterstützt jetzt die QUALIFY-Klausel zum Filtern der Ergebnisse der Fensterfunktion
- Clusterunterstützung für JDK 11 (Public Preview)
- Autoloader behandelt Schemas jetzt so, dass sie Nullwerte zulassen
Neue Version von Apache Spark
Databricks Runtime 10.0 und Databricks Runtime 10.0 Photon enthalten Apache Spark 3.2.0. Weitere Informationen finden Sie unter Apache Spark.
SELECT-Anweisung unterstützt jetzt die QUALIFY-Klausel zum Filtern der Ergebnisse der Fensterfunktion
Die SELECT
-Anweisung unterstützt jetzt die QUALIFY
-Klausel. QUALIFY
kann verwendet werden, um die Ergebnisse von Fensterfunktionen zu filtern. Mindestens eine Fensterfunktion muss entweder in der SELECT
-Liste oder in der QUALIFY
-Bedingung vorhanden sein. Beispiele:
SELECT * FROM t QUALIFY SUM(c2) OVER (PARTITION BY c1) > 0;
Clusterunterstützung für JDK 11 (Public Preview)
Databricks bietet jetzt Clusterunterstützung für Java Development Kit (JDK) 11.
Wenn Sie einen Cluster erstellen, können Sie angeben, dass der Cluster JDK 11 verwendet (sowohl für den Treiber als auch für den Executor). Fügen Sie hierzu die folgende Umgebungsvariable zu Erweiterte Optionen > Spark > Umgebungsvariablen hinzu:
JNAME=zulu11-ca-amd64
Autoloader behandelt Schemas jetzt so, dass sie Nullwerte zulassen
Autoloader behandelt jetzt alle abgeleiteten und vom Benutzer bereitgestellten Schemas standardmäßig als „Nullwerte zulassend“. Dadurch soll eine potenzielle Datenbeschädigung in Fällen vermieden werden, in denen die Daten NULL-Felder für Spalten enthalten, die keine Nullwerte zulassen. Eine neue Konfiguration wird eingeführt, um dieses Verhalten nachzuverfolgen: spark.databricks.cloudFiles.schema.forceNullable
. Standardmäßig enthält diese Konfiguration die Einstellung von spark.sql.streaming.fileSource.schema.forceNullable
, die von „FileStreamSource“ in Apache Spark verwendet wird und standardmäßig auf true
festgelegt ist.
Wichtige Änderungen
Breaking Changes für alle Spark SQL-Benutzer
- Neue
spark.databricks.behaviorChange.SC78546CorrelatedPredicate.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, wird eine Teilmenge korrelierter Gleichheitsprädikate ermöglicht, wenn eine Unterabfrage aggregiert wird. Die Standardeinstellung isttrue
. - Neue
spark.databricks.behaviorChange.SC82201BlockAutoAlias.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, werden beim Erstellen von Ansichten automatisch generierte Aliase blockiert. Die Standardeinstellung isttrue
. - Neue
spark.databricks.behaviorChange.SC81078CTASWithLocation.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, wirdCREATE TABLE AS SELECT
nicht mit einem nicht leeren Speicherort zugelassen. Die Standardeinstellung isttrue
. Beachten Sie, dass diese Konfiguration keine Auswirkung hat, wennspark.sql.legacy.allowNonEmptyLocationInCTAS
ebenfalls auftrue
festgelegt ist, und dassCREATE TABLE AS SELECT
mit einem nicht leeren Speicherort immer zulässig ist.
Breaking Changes für Spark SQL-Benutzer, die den ANSI-Modus aktivieren
Informationen zum ANSI-Modus finden Sie unter ANSI-Compliance in Databricks Runtime.
- Neue
spark.databricks.behaviorChange.SC83587NextDayDOW.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, löst ein ungültigesdayOfWeek
-Argument für dienext_day
-Funktion im ANSI-Modus eineIllegalArgumentException
aus. Andernfalls wirdnull
zurückgegeben. Die Standardeinstellung isttrue
. - Neue
spark.databricks.behaviorChange.SC83796CanCast.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, werden neue Regeln für die explizite Umwandlungssyntax im ANSI-Modus aktiviert. Die Standardeinstellung isttrue
. - Neue
spark.databricks.behaviorChange.SC79099CastStringToBoolean.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, wird beim Umwandeln einer Zeichenfolge in einen booleschen Wert eine Analysefehlerausnahme ausgelöst. Andernfalls wirdnull
zurückgegeben. Die Standardeinstellung isttrue
. - Neue
spark.databricks.behaviorChange.SC79064AbsOutsideRange.enabled
-Konfiguration: Wenn diese Einstellung auftrue
festgelegt ist, löst dieabs
-Funktion eine Ausnahme aus, wenn die Eingabe außerhalb des Bereichs liegt. Die Standardeinstellung isttrue
.
Breaking Changes für alle Python-Benutzer
- Die Python-API
delta.tables.DeltaTable.convertToDelta
gibt nun das richtigeDeltaTable
-Python-Objekt zurück, das zum Ausführen von Delta Lake-Befehlen verwendet werden kann. Zuvor wurde ein internes Objekt zurückgegeben, das nicht direkt aufgerufen werden konnte.
Bibliotheksupgrades
Apache Hadoop 3-Upgrade
- Databricks Runtime 10.0 führt ein Upgrade der Hadoop-Abhängigkeit von Hadoop 2.7.4 auf Hadoop 3.3.1 durch.
Verhaltensänderungen
- Hadoop 3 verwendet die Bibliotheken hadoop-client-api und hadoop-client-runtime anstelle der hadoop-common-Bibliothek, die bestimmte Abhängigkeiten von Drittanbietern abschirmt, die möglicherweise in öffentlichen Hadoop-APIs oder -Erweiterungen verwendet werden können.
- Die Konfigurationsoptionen für Hadoop 3 haben sich seit Hadoop 2 geändert. Informationen zu Hadoop 3.3.1-Optionen finden Sie unter core-default.xml.
- Databricks hat einige der Standardkonfigurationen für Hadoop 3 aktualisiert, damit sie mit Hadoop 2 konsistent sind, um sicherzustellen, dass Speicherconnectors über die gleichen Standardauthentifizierungseinstellungen und Leistungsstufen verfügen:
fs.azure.authorization.caching.enable
=false
fs.s3a.attempts.maximum
=10
fs.s3a.block.size
=67108864
fs.s3a.connection.timeout
=50000
fs.s3a.max.total.tasks
=1000
fs.s3a.retry.limit
=20
fs.s3a.retry.throttle.interval
=500ms
fs.s3a.assumed.role.credentials.provider
=com.amazonaws.auth.InstanceProfileCredentialsProvider
fs.s3a.aws.credentials.provider
=BasicAWSCredentialsProvider, DatabricksInstanceProfileCredentialsProvider, EnvironmentVariableCredentialsProvider, AnonymousAWSCredentialsProvider
- Der GCS-Connector (Google Cloud Storage) hat ein Upgrade von 2.1.6 auf 2.2.2 erhalten.
- Der Amazon Redshift-Connector verwendet jetzt das
s3a://
-Schema. Dass3n://
-Schema ist veraltet. - Behandelt die OSS-Klassennamen für die Amazon S3 MetadataStore-API zusätzlich zu abgeschirmten Klassen. Dies ermöglicht die Verarbeitung von OSS-Konfigurationen, ohne dass die abgeschirmten Klassennamen erforderlich sind.
- Beispielsweise können Sie die
org.apache.hadoop.fs.s3a.s3guard.NullMetadataStore
-Klasse in der Hadoop-Konfiguration angeben.
- Beispielsweise können Sie die
- Dadurch werden die
new Configuration()
undsparkContext.hadoopConfiguration
konsistent.- Wenn jetzt eine neue Hadoop-Konfiguration erstellt wird, stimmt sie mit der vordefinierten Hadoop-Konfiguration in
sparkContext.hadoopConfiguration
in der Databricks Runtime überein, einschließlich der Dateisystemschemas und ihrer Standardkonfiguration.
- Wenn jetzt eine neue Hadoop-Konfiguration erstellt wird, stimmt sie mit der vordefinierten Hadoop-Konfiguration in
- Obwohl die in Databricks Runtime enthaltenen Hadoop-Speicherconnectors vollständig mit Hadoop 3.3.1 kompatibel sind, ist nicht garantiert, dass sie mit OSS Hadoop 3.3.1-Connectors synchronisiert sind und möglicherweise ein anderes Verhalten aufweisen.
- Der Amazon S3-Connector lässt weiterhin (wenn auch mit einer Warnung) die Authentifizierung „user:secret“ in S3-URLs zu, im Vergleich zu HADOOP-14833, wodurch diese entfernt wird.
- globStatus gibt jetzt immer sortierte Ergebnisse zurück (HADOOP-10798)
- „fs.s3a.endpoint“ wurde hinzugefügt, wenn dies nicht festgelegt ist und die fs.s3a.endpoint-Region Null ist (SPARK-35878)
- Die von Databricks bereitgestellte automatische Auflösung der Amazon S3-Region wird in einigen Fällen möglicherweise nicht ausgelöst, da der globale Endpunkt festgelegt ist. Dies ist kein Problem, da das AWS SDK die Region ordnungsgemäß auflöst.
- Fügen Sie „fs.s3a.downgrade.syncable.exceptions“ hinzu, wenn dies nicht festgelegt ist (SPARK-35868)
- LZ4- und Snappy-Codecs basieren nicht auf der nativen Hadoop-Bibliothek (HADOOP-17125)
Bekannte Probleme
- SPARK-36681 Bei Verwendung von SnappyCodec zum Schreiben der Sequenzdatei tritt aufgrund eines bekannten Problems in Hadoop 3.3.1 (HADOOP-17891) ein Fehler mit UnsatisfiedLinkError auf.
Apache Spark
Databricks Runtime 10.0 enthält Apache Spark 3.2.0.
Inhalt dieses Abschnitts:
- Highlights
- Core und Spark SQL
- Strukturiertes Streaming
- PySpark
- MLlib
- Veraltete und entfernte Funktionen
Highlights
- Unterstützung der Pandas-API-Ebene in PySpark (SPARK-34849)
- EventTime-basierte Sitzungserstellung (Sitzungsfenster) (SPARK-10816)
- Unterstützung von ANSI SQL INTERVAL-Typen (SPARK-27790)
- ANSI-Modus GA (SPARK-35030)
- Standardisieren von Ausnahmemeldungen in Spark (SPARK-33539)
Core und Spark SQL
Verbesserungen bei der ANSI SQL-Kompatibilität
- Unterstützung von ANSI SQL INTERVAL-Typen (SPARK-27790)
- Neue Syntaxregeln für die Typkoersion im ANSI-Modus (SPARK-34246)
Leistungsverbesserungen
- Abfrageoptimierung
- Redundante Aggregate im Optimierer entfernen (SPARK-33122)
- Pushdowngrenzwert durch Project mit Join (SPARK-34622)
- Kardinalitätsschätzung des Union-, Sort- und Range-Operators (SPARK-33411)
- UnwrapCastInBinaryComparison-Unterstützung für In/InSet-Prädikat (SPARK-35316)
- Erforderliche Statistiken nach der Partitionsbereinigung beibehalten (SPARK-34119)
- Abfrageausführung
- Zstandard-Pufferpool standardmäßig aktivieren (SPARK-34340, SPARK-34390)
- Codegenerierung für alle Jointypen von Sort-Merge-Join hinzufügen (SPARK-34705)
- Verbesserung des geschachtelter Loop-Joins übertragen (SPARK-34706)
- Unterstützung von zwei Ebenen der Hashzuordnung für die endgültige Hashaggregation (SPARK-35141)
- Zulassen von gleichzeitigen Writern zum Schreiben dynamischer Partitionen und Buckettabellen (SPARK-26164)
- Leistung der Verarbeitung von FETCH_PRIOR in Thriftserver verbessern (SPARK-33655)
Connectorerweiterungen
- Parquet
- Upgrade von Parquet auf 1.12.1 (SPARK-36726)
- Parquet-Typen ohne Vorzeichen lesen, die als physischer Int32-Typ in Parquet gespeichert sind (SPARK-34817)
- Logischen int64-Parquet-Typ ohne Vorzeichen lesen, der als physischer int64-Typ mit Vorzeichen dezimal (20, 0) gespeichert ist (SPARK-34786)
- Parquet in Filterpushdown verbessern (SPARK-32792)
- ORC
- Upgrade von ORC auf Version 1.6.11 (SPARK-36482)
- Unterstützung der ORC-erzwungenen Positionsentwicklung (SPARK-32864)
- Unterstützung geschachtelter Spalten im vektorisierten ORC-Leser (SPARK-34862)
- Unterstützung der ZSTD- und LZ4-Komprimierung in der ORC-Datenquelle (SPARK-33978, SPARK-35612)
- Avro
- Upgrade von Avro auf Version 1.10.2 (SPARK-34778)
- Unterstützung der Avro-Schemaentwicklung für partitionierte Hive-Tabellen mit „avro.schema.literal“ (SPARK-26836)
- Neue Avro-Datenquellenoptionen zum Steuern des datetime-Rebasevorgangs in Lesevorgängen hinzufügen (SPARK-34404)
- Unterstützung für die vom Benutzer bereitgestellte Schema-URL in Avro hinzufügen (SPARK-34416)
- Unterstützung für positionsbasierten Schemaabgleich (Catalyst zu Avro) hinzufügen (SPARK-34365)
- JSON
- Upgrade von Jackson auf Version 2.12.3 (SPARK-35550)
- JSON-Datenquellen das Schreiben von Nicht-ASCII-Zeichen als Codepunkte gestatten (SPARK-35047)
- JDBC
- Berechnung eines genaueren Partitionssprungs in JDBCRelation (SPARK-34843)
- Hive-Metastore-Unterstützungsfilter nach „nicht in“ (SPARK-34538)
Featureverbesserungen
- Unterabfrage
- Korrelierte Unterabfragen verbessern (SPARK-35553)
- Neue integrierte Funktionen
- ilike (SPARK-36674, SPARK-36736)
- current_user (SPARK-21957)
- product (SPARK-33678)
- regexp_like,regexp (SPARK-33597, SPARK-34376)
- try_add (SPARK-35162)
- try_divide (SPARK-35162)
- bit_get (SPARK-33245)
- Standardmäßig Apache Hadoop 3.3.1 verwenden (SPARK-29250)
- Prüfsumme für Shuffleblöcke hinzufügen (SPARK-35275)
- Standardmäßiges spark.storage.replication.proactive aktivieren (SPARK-33870)
- Unterstützung von Fallbackspeicherbereinigung beim Beenden von SparkContext (SPARK-34142)
- Unterstützung von Java-Enumerationen aus der Scala-Dataset-API (SPARK-23862)
- ADD JAR mit Ivy-Koordinaten muss mit dem transitiven Hive-Verhalten kompatibel sein (SPARK-34506)
- Unterstützung der Befehle ADD ARCHIVE und LIST ARCHIVES (SPARK-34603)
- Unterstützung mehrerer Pfade für ADD FILE/JAR/ARCHIVE-Befehle (SPARK-35105)
- Unterstützung von Archivdateien als Ressourcen für die CREATE FUNCTION USING-Syntax (SPARK-35236)
- SparkSessionExtensions aus ServiceLoader laden (SPARK-35380)
- „sentences“-Funktion zu functions.{scala,py} hinzufügen (SPARK-35418)
- „spark.sql.hive.metastorePartitionPruning“ für Nicht-Hive-Tabellen anwenden, die Hive-Metastore für die Partitionsverwaltung verwenden (SPARK-36128)
- Ursache für exec-Verlust an Webbenutzeroberfläche weitergeben (SPARK-34764)
- Inlining von nicht deterministischen With-CTEs vermeiden (SPARK-36447)
- Unterstützung beim Analysieren aller Tabellen in einer bestimmten Datenbank (SPARK-33687)
- Standardisieren von Ausnahmemeldungen in Spark (SPARK-33539)
- Unterstützung von (IGNORE | RESPECT) NULLS für LEAD/LAG/NTH_VALUE/FIRST_VALUE/LAST_VALUE (SPARK-30789)
Weitere wichtige Änderungen
- Überwachen
- Neue Metriken für ExternalShuffleService (SPARK-35258)
- Neue REST-APIs und Parameter auf Stufenebene hinzufügen (SPARK-26399)
- Unterstützung von Task- und Executor-Metrikverteilungen in der REST-API (SPARK-34488)
- Fallbackmetriken für das Hashaggregat hinzufügen (SPARK-35529)
- „count_distinct“ als Option zu Dataset#summary hinzufügen (SPARK-34165)
- „ScriptTransform“ in SQL/Core implementieren (SPARK-31936)
- Heartbeattimeout für BlockManagerMaster-Treiber als konfigurierbar festlegen (SPARK-34278)
- Shuffledienstname auf Clientseite konfigurierbar gestalten und klassenpfadbasierte Außerkraftsetzung der Konfiguration auf der Serverseite zulassen (SPARK-34828)
- ExecutorMetricsPoller sollte den Stage-Eintrag in stageTCMP beibehalten, bis ein Heartbeat auftritt (SPARK-34779)
- In RewriteDistinctAggregates „if“ durch Filterklausel ersetzen (SPARK-34882)
- Fehler beim Anwenden von CostBasedJoinReorder auf Self-Join beheben (SPARK-34354)
- CREATE TABLE LIKE sollte die Eigenschaften reservierter Tabellen berücksichtigen (SPARK-34935)
- „ivySettings“-Datei an den Treiber im YARN-Clustermodus senden (SPARK-34472)
- Doppelte gemeinsame Spalten aus USING/NATURAL JOIN auflösen (SPARK-34527)
- Interne Ansichtseigenschaften für Tabellenbeschreibungsbefehl ausblenden (SPARK-35318)
- Unterstützung beim Auflösen fehlender Attribute für „distribute“/„cluster by“/„repartition hint“ (SPARK-35331)
- Fehler bei der Überprüfung des Pfads in FileStreamSink.hasMetadata ignorieren (SPARK-34526)
- Unterstützung für s3a Magic Committer durch Rückschließen auf fehlende Konfigurationen verbessern (SPARK-35383)
- Auslassung zulassen: in der STRUCT-Typzeichenfolge (SPARK-35706)
- Neuen Operator hinzufügen, um zu unterscheiden, ob sichere Optimierung durch AQE möglich ist (SPARK-35786)
- Neue geschachtelte Strukturfelder anfügen, anstatt Sortierung für unionByName mit NULL-Füllung (SPARK-35290)
- ArraysZip sollte Feldnamen beibehalten, um zu vermeiden, dass sie vom Analysetool bzw. Optimierer erneut geschrieben werden (SPARK-35876)
- „Void“ als Typname von NullType verwenden (SPARK-36224)
- Einführung einer neuen API für FileCommitProtocol ermöglicht flexible Dateibenennung (SPARK-33298)
Verhaltensänderungen
Sehen Sie sich die Migrationsleitfäden für jede Komponente an: Spark Core.
Strukturiertes Streaming
Hauptfeatures
- EventTime-basierte Sitzungserstellung (Sitzungsfenster) (SPARK-10816)
- Upgrade des Kafka-Clients auf 2.8.0 (SPARK-33913)
- Trigger.AvailableNow zum Ausführen von Streamingabfragen wie Trigger.Once in mehreren Batches in Scala (SPARK-36533)
Weitere wichtige Änderungen
- Einführung einer neuen Option in der Kafka-Quelle, um eine Mindestanzahl von Datensätzen anzugeben, die pro Trigger gelesen werden sollen (SPARK-35312)
- Letzte Offsets zum Quellfortschritt hinzufügen (SPARK-33955)
PySpark
Project Zen
- Pandas-API in Spark (SPARK-34849)
- Mypy für pandas-on-Spark aktivieren (SPARK-34941)
- CategoricalDtype-Unterstützung implementieren (SPARK-35997, SPARK-36185)
- Grundlegende Vorgänge für Serie und Index abschließen (SPARK-36103, SPARK-36104, SPARK-36192)
- Verhaltensweisen an 1.3 Pandas anpassen (SPARK-36367)
- Verhaltensweisen bei Serien mit NaN an Pandas anpassen (SPARK-36031, SPARK-36310)
- Unären Operator „invert“ für integrale Serie und Index implementieren (SPARK-36003)
- CategoricalIndex.map und DatetimeIndex.map implementieren (SPARK-36470)
- Index.map implementieren (SPARK-36469)
- „faulthanlder“-Unterstützung für Python-Worker abgestürzt (SPARK-36062)
- Snake-Benennungsregel für die Funktions-APIs verwenden (SPARK-34306)
- „spark.sql.execution.pyspark.udf.simplifiedTraceback.enabled“ standardmäßig aktivieren (SPARK-35419)
- Unterstützung für das Rückschließen von geschachteltem Wörterbuch als Struktur beim Erstellen eines DataFrame (SPARK-35929)
Weitere wichtige Änderungen
- Standardmäßig den angehefteten Threadmodus aktivieren (SPARK-35303)
- NullType-Unterstützung für Arrow-Ausführungen hinzufügen (SPARK-33489)
- Unterstützung von „Arrow self_destruct“ zu toPandas hinzufügen (SPARK-32953)
- Threadzielwrapper-API für pyspark-Modus zur Threadanheftung hinzufügen (SPARK-35498)
Verhaltensänderungen
Lesen Sie die Migrationsleitfäden.
MLlib
Leistungsverbesserungen
- BucketedRandomProjectionLSH-Transformationsoptimierung (SPARK-34220)
- w2v findSynonyms-Optimierung (SPARK-34189)
- Platzsparendes GEMM durch Überspringen der Begrenzungsprüfung optimieren (SPARK-35707)
- Leistung von ML ALS recommendForAll durch GEMV verbessern (SPARK-33518)
Verbesserungen beim Modelltraining
- Logistic Aggregator umgestalten – Unterstützung von virtueller Zentrierung (SPARK-34797)
- Binäre logistische Regression mit Zentrierung von Abfangunterstützung (SPARK-34858, SPARK-34448)
- Multinomiale logistische Regression mit Zentrierung von Abfangunterstützung (SPARK-34860)
BLAS-Verbesserungen
- Vollständiges Ersetzen von com.github.fommil.netlib durch dev.ludovic.netlib:2.0 (SPARK-35295)
- Vektorisierte BLAS-Implementierung hinzufügen (SPARK-33882)
- Fallback-BLAS mit dev.ludovic.netlib beschleunigen (SPARK-35150)
Weitere wichtige Änderungen
- OVR-Transformation behebt möglichen Spaltenkonflikt (SPARK-34356)
Veraltete und entfernte Funktionen
- Deprecate spark.launcher.childConnectionTimeout(SPARK-33717)
- GROUP BY... als veraltet kennzeichnen GROUPING SETS (...) und GROUP BY GROUPING SETS (…) höher stufen (SPARK-34932)
- „ps.broadcast“-API als veraltet kennzeichnen (SPARK-35810)
- Das Argument
num_files
als veraltet kennzeichnen (SPARK-35807) - „DataFrame.to_spark_io“ als veraltet kennzeichnen (SPARK-35811)
Wartungsupdates
Weitere Informationen finden Sie unter Databricks Runtime 10.0-Wartungsupdates.
Systemumgebung
- Betriebssystem: Ubuntu 20.04.3 LTS
- Java: Zulu 8.56.0.21-CA-linux64
- Scala: 2.12.14
- Python: 3.8.10
- R: 4.1.1
- Delta Lake: 1.0.0
Installierte Python-Bibliotheken
Bibliothek | Version | Bibliothek | Version | Bibliothek | Version |
---|---|---|---|---|---|
Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 | backcall | 0.2.0 |
boto3 | 1.16.7 | botocore | 1.19.7 | certifi | 2020.12.5 |
chardet | 4.0.0 | cycler | 0.10.0 | Cython | 0.29.23 |
dbus-python | 1.2.16 | decorator | 5.0.6 | distlib | 0.3.3 |
distro-info | 0.23ubuntu1 | facets-overview | 1.0.0 | filelock | 3.0.12 |
idna | 2.10 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | jedi | 0.17.2 | jmespath | 0.10.0 |
joblib | 1.0.1 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
kiwisolver | 1.3.1 | koalas | 1.8.1 | matplotlib | 3.4.2 |
numpy | 1.19.2 | Pandas | 1.2.4 | parso | 0.7.0 |
patsy | 0.5.1 | pexpect | 4.8.0 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.1.0 |
prompt-toolkit | 3.0.17 | protobuf | 3.17.2 | psycopg2 | 2.8.5 |
ptyprocess | 0.7.0 | pyarrow | 4.0.0 | Pygments | 2.8.1 |
PyGObject | 3.36.0 | pyparsing | 2.4.7 | python-apt | 2.0.0+ubuntu0.20.4.6 |
Python-dateutil | 2.8.1 | pytz | 2020.5 | pyzmq | 20.0.0 |
requests | 2.25.1 | requests-unixsocket | 0.2.0 | s3transfer | 0.3.7 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
setuptools | 52.0.0 | sechs | 1.15.0 | ssh-import-id | 5.10 |
statsmodels | 0.12.2 | tenacity | 8.0.1 | threadpoolctl | 2.1.0 |
tornado | 6.1 | traitlets | 5.0.5 | unattended-upgrades | 0,1 |
urllib3 | 1.25.11 | virtualenv | 20.4.1 | wcwidth | 0.2.5 |
wheel | 0.36.2 |
Installierte R-Bibliotheken
R-Bibliotheken werden aus der Microsoft CRAN-Momentaufnahme am 21.09.2021 installiert.
Bibliothek | Version | Bibliothek | Version | Bibliothek | Version |
---|---|---|---|---|---|
askpass | 1.1 | assertthat | 0.2.1 | backports | 1.2.1 |
base | 4.1.1 | base64enc | 0.1-3 | bit | 4.0.4 |
bit64 | 4.0.5 | Blob | 1.2.2 | boot | 1.3-28 |
brew | 1.0-6 | brio | 1.1.2 | broom | 0.7.9 |
bslib | 0.3.0 | cachem | 1.0.6 | callr | 3.7.0 |
caret | 6.0-88 | cellranger | 1.1.0 | chron | 2.3-56 |
class | 7.3-19 | cli | 3.0.1 | clipr | 0.7.1 |
cluster | 2.1.2 | codetools | 0.2-18 | colorspace | 2.0-2 |
commonmark | 1.7 | compiler | 4.1.1 | config | 0.3.1 |
cpp11 | 0.3.1 | crayon | 1.4.1 | Anmeldeinformationen | 1.3.1 |
curl | 4.3.2 | data.table | 1.14.0 | datasets | 4.1.1 |
DBI | 1.1.1 | dbplyr | 2.1.1 | desc | 1.3.0 |
devtools | 2.4.2 | diffobj | 0.3.4 | digest | 0.6.27 |
dplyr | 1.0.7 | dtplyr | 1.1.0 | ellipsis | 0.3.2 |
Evaluieren | 0.14 | fansi | 0.5.0 | farver | 2.1.0 |
fastmap | 1.1.0 | forcats | 0.5.1 | foreach | 1.5.1 |
foreign | 0.8-81 | forge | 0.2.0 | fs | 1.5.0 |
future | 1.22.1 | future.apply | 1.8.1 | gargle | 1.2.0 |
generics | 0.1.0 | gert | 1.4.1 | ggplot2 | 3.3.5 |
gh | 1.3.0 | gitcreds | 0.1.1 | glmnet | 4.1-2 |
globals | 0.14.0 | glue | 1.4.2 | googledrive | 2.0.0 |
googlesheets4 | 1.0.0 | gower | 0.2.2 | Grafiken | 4.1.1 |
grDevices | 4.1.1 | grid | 4.1.1 | gridExtra | 2.3 |
gsubfn | 0.7 | gtable | 0.3.0 | haven | 2.4.3 |
highr | 0.9 | hms | 1.1.0 | htmltools | 0.5.2 |
htmlwidgets | 1.5.4 | httpuv | 1.6.3 | httr | 1.4.2 |
hwriter | 1.3.2 | hwriterPlus | 1.0-3 | ids | 1.0.1 |
ini | 0.3.1 | ipred | 0.9-12 | isoband | 0.2.5 |
iterators | 1.0.13 | jquerylib | 0.1.4 | jsonlite | 1.7.2 |
KernSmooth | 2.23-20 | knitr | 1.34 | labeling | 0.4.2 |
later | 1.3.0 | lattice | 0.20-44 | lava | 1.6.10 |
Lebenszyklus | 1.0.0 | listenv | 0.8.0 | lubridate | 1.7.10 |
magrittr | 2.0.1 | markdown | 1.1 | MASS | 7.3-54 |
Matrix | 1.3-4 | memoise | 2.0.0 | methods | 4.1.1 |
mgcv | 1.8-37 | mime | 0,11 | ModelMetrics | 1.2.2.2 |
modelr | 0.1.8 | munsell | 0.5.0 | nlme | 3.1-152 |
nnet | 7.3-16 | numDeriv | 2016.8-1.1 | openssl | 1.4.5 |
parallel | 4.1.1 | parallelly | 1.28.1 | pillar | 1.6.2 |
pkgbuild | 1.2.0 | pkgconfig | 2.0.3 | pkgload | 1.2.2 |
plogr | 0.2.0 | plyr | 1.8.6 | praise | 1.0.0 |
prettyunits | 1.1.1 | pROC | 1.18.0 | processx | 3.5.2 |
prodlim | 2019.11.13 | Fortschritt | 1.2.2 | progressr | 0.8.0 |
promises | 1.2.0.1 | proto | 1.0.0 | ps | 1.6.0 |
purrr | 0.3.4 | r2d3 | 0.2.5 | R6 | 2.5.1 |
randomForest | 4.6-14 | rappdirs | 0.3.3 | rcmdcheck | 1.3.3 |
RColorBrewer | 1.1-2 | Rcpp | 1.0.7 | readr | 2.0.1 |
readxl | 1.3.1 | recipes | 0.1.16 | rematch | 1.0.1 |
rematch2 | 2.1.2 | remotes | 2.4.0 | reprex | 2.0.1 |
reshape2 | 1.4.4 | rlang | 0.4.11 | rmarkdown | 2.11 |
RODBC | 1.3-19 | roxygen2 | 7.1.2 | rpart | 4.1-15 |
rprojroot | 2.0.2 | Rserve | 1.8-8 | RSQLite | 2.2.8 |
rstudioapi | 0,13 | rversions | 2.1.1 | rvest | 1.0.1 |
sass | 0.4.0 | scales | 1.1.1 | selectr | 0.4-2 |
sessioninfo | 1.1.1 | shape | 1.4.6 | shiny | 1.6.0 |
sourcetools | 0.1.7 | sparklyr | 1.7.2 | SparkR | 3.2.0 |
spatial | 7.3-11 | splines | 4.1.1 | sqldf | 0.4-11 |
SQUAREM | 2021.1 | stats | 4.1.1 | stats4 | 4.1.1 |
stringi | 1.7.4 | stringr | 1.4.0 | survival | 3.2-13 |
sys | 3.4 | tcltk | 4.1.1 | TeachingDemos | 2,10 |
testthat | 3.0.4 | tibble | 3.1.4 | tidyr | 1.1.3 |
tidyselect | 1.1.1 | tidyverse | 1.3.1 | timeDate | 3043.102 |
tinytex | 0,33 | tools | 4.1.1 | tzdb | 0.1.2 |
usethis | 2.0.1 | utf8 | 1.2.2 | utils | 4.1.1 |
uuid | 0.1-4 | vctrs | 0.3.8 | viridisLite | 0.4.0 |
vroom | 1.5.5 | waldo | 0.3.1 | whisker | 0,4 |
withr | 2.4.2 | xfun | 0,26 | xml2 | 1.3.2 |
xopen | 1.0.0 | xtable | 1.8-4 | yaml | 2.2.1 |
zip | 2.2.0 |
Installierte Java- und Scala-Bibliotheken (Scala 2.12-Clusterversion)
Gruppen-ID | Artefakt-ID | Version |
---|---|---|
antlr | antlr | 2.7.7 |
com.amazonaws | amazon-kinesis-client | 1.12.0 |
com.amazonaws | aws-java-sdk-autoscaling | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudformation | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudfront | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudhsm | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudsearch | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudtrail | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudwatch | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudwatchmetrics | 1.11.655 |
com.amazonaws | aws-java-sdk-codedeploy | 1.11.655 |
com.amazonaws | aws-java-sdk-cognitoidentity | 1.11.655 |
com.amazonaws | aws-java-sdk-cognitosync | 1.11.655 |
com.amazonaws | aws-java-sdk-config | 1.11.655 |
com.amazonaws | aws-java-sdk-core | 1.11.655 |
com.amazonaws | aws-java-sdk-datapipeline | 1.11.655 |
com.amazonaws | aws-java-sdk-directconnect | 1.11.655 |
com.amazonaws | aws-java-sdk-directory | 1.11.655 |
com.amazonaws | aws-java-sdk-dynamodb | 1.11.655 |
com.amazonaws | aws-java-sdk-ec2 | 1.11.655 |
com.amazonaws | aws-java-sdk-ecs | 1.11.655 |
com.amazonaws | aws-java-sdk-efs | 1.11.655 |
com.amazonaws | aws-java-sdk-elasticache | 1.11.655 |
com.amazonaws | aws-java-sdk-elasticbeanstalk | 1.11.655 |
com.amazonaws | aws-java-sdk-elasticloadbalancing | 1.11.655 |
com.amazonaws | aws-java-sdk-elastictranscoder | 1.11.655 |
com.amazonaws | aws-java-sdk-emr | 1.11.655 |
com.amazonaws | aws-java-sdk-glacier | 1.11.655 |
com.amazonaws | aws-java-sdk-glue | 1.11.655 |
com.amazonaws | aws-java-sdk-iam | 1.11.655 |
com.amazonaws | aws-java-sdk-importexport | 1.11.655 |
com.amazonaws | aws-java-sdk-kinesis | 1.11.655 |
com.amazonaws | aws-java-sdk-kms | 1.11.655 |
com.amazonaws | aws-java-sdk-lambda | 1.11.655 |
com.amazonaws | aws-java-sdk-logs | 1.11.655 |
com.amazonaws | aws-java-sdk-machinelearning | 1.11.655 |
com.amazonaws | aws-java-sdk-opsworks | 1.11.655 |
com.amazonaws | aws-java-sdk-rds | 1.11.655 |
com.amazonaws | aws-java-sdk-redshift | 1.11.655 |
com.amazonaws | aws-java-sdk-route53 | 1.11.655 |
com.amazonaws | aws-java-sdk-s3 | 1.11.655 |
com.amazonaws | aws-java-sdk-ses | 1.11.655 |
com.amazonaws | aws-java-sdk-simpledb | 1.11.655 |
com.amazonaws | aws-java-sdk-simpleworkflow | 1.11.655 |
com.amazonaws | aws-java-sdk-sns | 1.11.655 |
com.amazonaws | aws-java-sdk-sqs | 1.11.655 |
com.amazonaws | aws-java-sdk-ssm | 1.11.655 |
com.amazonaws | aws-java-sdk-storagegateway | 1.11.655 |
com.amazonaws | aws-java-sdk-sts | 1.11.655 |
com.amazonaws | aws-java-sdk-support | 1.11.655 |
com.amazonaws | aws-java-sdk-swf-libraries | 1.11.22 |
com.amazonaws | aws-java-sdk-workspaces | 1.11.655 |
com.amazonaws | jmespath-java | 1.11.655 |
com.chuusai | shapeless_2.12 | 2.3.3 |
com.clearspring.analytics | Datenstrom | 2.9.6 |
com.databricks | Rserve | 1.8-3 |
com.databricks | jets3t | 0.7.1-0 |
com.databricks.scalapb | compilerplugin_2.12 | 0.4.15-10 |
com.databricks.scalapb | scalapb-runtime_2.12 | 0.4.15-10 |
com.esotericsoftware | kryo-shaded | 4.0.2 |
com.esotericsoftware | minlog | 1.3.0 |
com.fasterxml | classmate | 1.3.4 |
com.fasterxml.jackson.core | jackson-annotations | 2.12.2 |
com.fasterxml.jackson.core | jackson-core | 2.12.2 |
com.fasterxml.jackson.core | jackson-databind | 2.12.2 |
com.fasterxml.jackson.dataformat | jackson-dataformat-cbor | 2.12.2 |
com.fasterxml.jackson.datatype | jackson-datatype-joda | 2.12.2 |
com.fasterxml.jackson.module | jackson-module-paranamer | 2.12.2 |
com.fasterxml.jackson.module | jackson-module-scala_2.12 | 2.12.2 |
com.github.ben-manes.caffeine | caffeine | 2.3.4 |
com.github.fommil | jniloader | 1.1 |
com.github.fommil.netlib | core | 1.1.2 |
com.github.fommil.netlib | native_ref-java | 1.1 |
com.github.fommil.netlib | native_ref-java-natives | 1.1 |
com.github.fommil.netlib | native_system-java | 1.1 |
com.github.fommil.netlib | native_system-java-natives | 1.1 |
com.github.fommil.netlib | netlib-native_ref-linux-x86_64-natives | 1.1 |
com.github.fommil.netlib | netlib-native_system-linux-x86_64-natives | 1.1 |
com.github.luben | zstd-jni | 1.5.0-4 |
com.github.wendykierp | JTransforms | 3.1 |
com.google.code.findbugs | jsr305 | 3.0.0 |
com.google.code.gson | gson | 2.8.6 |
com.google.crypto.tink | tink | 1.6.0 |
com.google.flatbuffers | flatbuffers-java | 1.9.0 |
com.google.guava | guava | 15.0 |
com.google.protobuf | protobuf-java | 2.6.1 |
com.h2database | h2 | 1.4.195 |
com.helger | profiler | 1.1.1 |
com.jcraft | jsch | 0.1.50 |
com.jolbox | bonecp | 0.8.0.RELEASE |
com.lihaoyi | sourcecode_2.12 | 0.1.9 |
com.microsoft.sqlserver | mssql-jdbc | 9.2.1.jre8 |
com.microsoft.azure | azure-data-lake-store-sdk | 2.3.9 |
com.ning | compress-lzf | 1.0.3 |
com.sun.istack | istack-commons-runtime | 3.0.8 |
com.sun.mail | javax.mail | 1.5.2 |
com.tdunning | json | 1.8 |
com.thoughtworks.paranamer | paranamer | 2.8 |
com.trueaccord.lenses | lenses_2.12 | 0.4.12 |
com.twitter | chill-java | 0.10.0 |
com.twitter | chill_2.12 | 0.10.0 |
com.twitter | util-app_2.12 | 7.1.0 |
com.twitter | util-core_2.12 | 7.1.0 |
com.twitter | util-function_2.12 | 7.1.0 |
com.twitter | util-jvm_2.12 | 7.1.0 |
com.twitter | util-lint_2.12 | 7.1.0 |
com.twitter | util-registry_2.12 | 7.1.0 |
com.twitter | util-stats_2.12 | 7.1.0 |
com.typesafe | config | 1.2.1 |
com.typesafe.scala-logging | scala-logging_2.12 | 3.7.2 |
com.univocity | univocity-parsers | 2.9.1 |
com.zaxxer | HikariCP | 3.1.0 |
commons-cli | commons-cli | 1.2 |
commons-codec | commons-codec | 1.15 |
commons-collections | commons-collections | 3.2.2 |
commons-dbcp | commons-dbcp | 1.4 |
commons-fileupload | commons-fileupload | 1.3.3 |
commons-httpclient | commons-httpclient | 3.1 |
commons-io | commons-io | 2.8.0 |
commons-lang | commons-lang | 2.6 |
commons-logging | commons-logging | 1.1.3 |
commons-net | commons-net | 3.1 |
commons-pool | commons-pool | 1.5.4 |
dev.ludovic.netlib | arpack | 1.3.2 |
dev.ludovic.netlib | blas | 1.3.2 |
dev.ludovic.netlib | lapack | 1.3.2 |
hive-2.3__hadoop-3.2 | jets3t-0.7 | liball_deps_2.12 |
info.ganglia.gmetric4j | gmetric4j | 1.0.10 |
io.airlift | aircompressor | 0,19 |
io.delta | delta-sharing-spark_2.12 | 0.1.0 |
io.dropwizard.metrics | metrics-core | 4.1.1 |
io.dropwizard.metrics | metrics-graphite | 4.1.1 |
io.dropwizard.metrics | metrics-healthchecks | 4.1.1 |
io.dropwizard.metrics | metrics-jetty9 | 4.1.1 |
io.dropwizard.metrics | metrics-jmx | 4.1.1 |
io.dropwizard.metrics | metrics-json | 4.1.1 |
io.dropwizard.metrics | metrics-jvm | 4.1.1 |
io.dropwizard.metrics | metrics-servlets | 4.1.1 |
io.netty | netty-all | 4.1.63.Final |
io.prometheus | simpleclient | 0.7.0 |
io.prometheus | simpleclient_common | 0.7.0 |
io.prometheus | simpleclient_dropwizard | 0.7.0 |
io.prometheus | simpleclient_pushgateway | 0.7.0 |
io.prometheus | simpleclient_servlet | 0.7.0 |
io.prometheus.jmx | Sammlung | 0.12.0 |
jakarta.annotation | jakarta.annotation-api | 1.3.5 |
jakarta.servlet | jakarta.servlet-api | 4.0.3 |
jakarta.validation | jakarta.validation-api | 2.0.2 |
jakarta.ws.rs | jakarta.ws.rs-api | 2.1.6 |
javax.activation | activation | 1.1.1 |
javax.annotation | javax.annotation-api | 1.3.2 |
javax.el | javax.el-api | 2.2.4 |
javax.jdo | jdo-api | 3.0.1 |
javax.transaction | jta | 1.1 |
javax.transaction | transaction-api | 1.1 |
javax.xml.bind | jaxb-api | 2.2.2 |
javax.xml.stream | stax-api | 1.0-2 |
javolution | javolution | 5.5.1 |
jline | jline | 2.14.6 |
joda-time | joda-time | 2.10.5 |
log4j | apache-log4j-extras | 1.2.17 |
log4j | log4j | 1.2.17 |
maven-trees | hive-2.3__hadoop-3.2 | liball_deps_2.12 |
net.java.dev.jna | jna | 5.8.0 |
net.razorvine | pyrolite | 4.30 |
net.sf.jpam | jpam | 1.1 |
net.sf.opencsv | opencsv | 2.3 |
net.sf.supercsv | super-csv | 2.2.0 |
net.snowflake | snowflake-ingest-sdk | 0.9.6 |
net.snowflake | snowflake-jdbc | 3.13.3 |
net.snowflake | spark-snowflake_2.12 | 2.9.0-spark_3.1 |
net.sourceforge.f2j | arpack_combined_all | 0,1 |
org.acplt.remotetea | remotetea-oncrpc | 1.1.2 |
org.antlr | ST4 | 4.0.4 |
org.antlr | antlr-runtime | 3.5.2 |
org.antlr | antlr4-runtime | 4.8 |
org.antlr | stringtemplate | 3.2.1 |
org.apache.ant | ant | 1.9.2 |
org.apache.ant | ant-jsch | 1.9.2 |
org.apache.ant | ant-launcher | 1.9.2 |
org.apache.arrow | arrow-format | 2.0.0 |
org.apache.arrow | arrow-memory-core | 2.0.0 |
org.apache.arrow | arrow-memory-netty | 2.0.0 |
org.apache.arrow | arrow-vector | 2.0.0 |
org.apache.avro | avro | 1.10.2 |
org.apache.avro | avro-ipc | 1.10.2 |
org.apache.avro | avro-mapred | 1.10.2 |
org.apache.commons | commons-compress | 1.20 |
org.apache.commons | commons-crypto | 1.1.0 |
org.apache.commons | commons-lang3 | 3.12.0 |
org.apache.commons | commons-math3 | 3.4.1 |
org.apache.commons | commons-text | 1.6 |
org.apache.curator | curator-client | 2.13.0 |
org.apache.curator | curator-framework | 2.13.0 |
org.apache.curator | curator-recipes | 2.13.0 |
org.apache.derby | derby | 10.14.2.0 |
org.apache.hadoop | hadoop-client-runtime | 3.3.1 |
org.apache.hive | hive-beeline | 2.3.9 |
org.apache.hive | hive-cli | 2.3.9 |
org.apache.hive | hive-jdbc | 2.3.9 |
org.apache.hive | hive-llap-client | 2.3.9 |
org.apache.hive | hive-llap-common | 2.3.9 |
org.apache.hive | hive-serde | 2.3.9 |
org.apache.hive | hive-shims | 2.3.9 |
org.apache.hive | hive-storage-api | 2.7.2 |
org.apache.hive.shims | hive-shims-0.23 | 2.3.9 |
org.apache.hive.shims | hive-shims-common | 2.3.9 |
org.apache.hive.shims | hive-shims-scheduler | 2.3.9 |
org.apache.htrace | htrace-core4 | 4.1.0-incubating |
org.apache.httpcomponents | httpclient | 4.5.13 |
org.apache.httpcomponents | httpcore | 4.4.12 |
org.apache.ivy | ivy | 2.5.0 |
org.apache.mesos | mesos-shaded-protobuf | 1.4.0 |
org.apache.orc | orc-core | 1.6.10 |
org.apache.orc | orc-mapreduce | 1.6.10 |
org.apache.orc | orc-shims | 1.6.10 |
org.apache.parquet | parquet-column | 1.12.0-databricks-0003 |
org.apache.parquet | parquet-common | 1.12.0-databricks-0003 |
org.apache.parquet | parquet-encoding | 1.12.0-databricks-0003 |
org.apache.parquet | parquet-format-structures | 1.12.0-databricks-0003 |
org.apache.parquet | parquet-hadoop | 1.12.0-databricks-0003 |
org.apache.parquet | parquet-jackson | 1.12.0-databricks-0003 |
org.apache.thrift | libfb303 | 0.9.3 |
org.apache.thrift | libthrift | 0.12.0 |
org.apache.xbean | xbean-asm9-shaded | 4.20 |
org.apache.yetus | audience-annotations | 0.5.0 |
org.apache.zookeeper | zookeeper | 3.6.2 |
org.apache.zookeeper | zookeeper-jute | 3.6.2 |
org.checkerframework | checker-qual | 3.5.0 |
org.codehaus.jackson | jackson-core-asl | 1.9.13 |
org.codehaus.jackson | jackson-mapper-asl | 1.9.13 |
org.codehaus.janino | commons-compiler | 3.0.16 |
org.codehaus.janino | janino | 3.0.16 |
org.datanucleus | datanucleus-api-jdo | 4.2.4 |
org.datanucleus | datanucleus-core | 4.1.17 |
org.datanucleus | datanucleus-rdbms | 4.1.19 |
org.datanucleus | javax.jdo | 3.2.0-m3 |
org.eclipse.jetty | jetty-client | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-continuation | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-http | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-io | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-jndi | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-plus | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-proxy | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-security | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-server | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-servlet | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-servlets | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-util | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-util-ajax | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-webapp | 9.4.40.v20210413 |
org.eclipse.jetty | jetty-xml | 9.4.40.v20210413 |
org.eclipse.jetty.websocket | websocket-api | 9.4.40.v20210413 |
org.eclipse.jetty.websocket | websocket-client | 9.4.40.v20210413 |
org.eclipse.jetty.websocket | websocket-common | 9.4.40.v20210413 |
org.eclipse.jetty.websocket | websocket-server | 9.4.40.v20210413 |
org.eclipse.jetty.websocket | websocket-servlet | 9.4.40.v20210413 |
org.fusesource.leveldbjni | leveldbjni-all | 1.8 |
org.glassfish.hk2 | hk2-api | 2.6.1 |
org.glassfish.hk2 | hk2-locator | 2.6.1 |
org.glassfish.hk2 | hk2-utils | 2.6.1 |
org.glassfish.hk2 | osgi-resource-locator | 1.0.3 |
org.glassfish.hk2.external | aopalliance-repackaged | 2.6.1 |
org.glassfish.hk2.external | jakarta.inject | 2.6.1 |
org.glassfish.jaxb | jaxb-runtime | 2.3.2 |
org.glassfish.jersey.containers | jersey-container-servlet | 2.34 |
org.glassfish.jersey.containers | jersey-container-servlet-core | 2.34 |
org.glassfish.jersey.core | jersey-client | 2.34 |
org.glassfish.jersey.core | jersey-common | 2.34 |
org.glassfish.jersey.core | jersey-server | 2.34 |
org.glassfish.jersey.inject | jersey-hk2 | 2.34 |
org.hibernate.validator | hibernate-validator | 6.1.0.Final |
org.javassist | javassist | 3.25.0-GA |
org.jboss.logging | jboss-logging | 3.3.2.Final |
org.jdbi | jdbi | 2.63.1 |
org.jetbrains | annotations | 17.0.0 |
org.joda | joda-convert | 1.7 |
org.jodd | jodd-core | 3.5.2 |
org.json4s | json4s-ast_2.12 | 3.7.0-M11 |
org.json4s | json4s-core_2.12 | 3.7.0-M11 |
org.json4s | json4s-jackson_2.12 | 3.7.0-M11 |
org.json4s | json4s-scalap_2.12 | 3.7.0-M11 |
org.lz4 | lz4-java | 1.7.1 |
org.mariadb.jdbc | mariadb-java-client | 2.2.5 |
org.objenesis | objenesis | 2.5.1 |
org.postgresql | postgresql | 42.2.19 |
org.roaringbitmap | RoaringBitmap | 0.9.14 |
org.roaringbitmap | shims | 0.9.14 |
org.rocksdb | rocksdbjni | 6.20.3 |
org.rosuda.REngine | REngine | 2.1.0 |
org.scala-lang | scala-compiler_2.12 | 2.12.14 |
org.scala-lang | scala-library_2.12 | 2.12.14 |
org.scala-lang | scala-reflect_2.12 | 2.12.14 |
org.scala-lang.modules | scala-collection-compat_2.12 | 2.4.3 |
org.scala-lang.modules | scala-parser-combinators_2.12 | 1.1.2 |
org.scala-lang.modules | scala-xml_2.12 | 1.2.0 |
org.scala-sbt | test-interface | 1.0 |
org.scalacheck | scalacheck_2.12 | 1.14.2 |
org.scalactic | scalactic_2.12 | 3.0.8 |
org.scalanlp | breeze-macros_2.12 | 1.0 |
org.scalanlp | breeze_2.12 | 1.0 |
org.scalatest | scalatest_2.12 | 3.0.8 |
org.slf4j | jcl-over-slf4j | 1.7.30 |
org.slf4j | jul-to-slf4j | 1.7.30 |
org.slf4j | slf4j-api | 1.7.30 |
org.slf4j | slf4j-log4j12 | 1.7.30 |
org.spark-project.spark | unused | 1.0.0 |
org.springframework | spring-core | 4.1.4.RELEASE |
org.springframework | spring-test | 4.1.4.RELEASE |
org.threeten | threeten-extra | 1.5.0 |
org.tukaani | xz | 1.8 |
org.typelevel | algebra_2.12 | 2.0.0-M2 |
org.typelevel | cats-kernel_2.12 | 2.0.0-M4 |
org.typelevel | machinist_2.12 | 0.6.8 |
org.typelevel | macro-compat_2.12 | 1.1.1 |
org.typelevel | spire-macros_2.12 | 0.17.0-M1 |
org.typelevel | spire-platform_2.12 | 0.17.0-M1 |
org.typelevel | spire-util_2.12 | 0.17.0-M1 |
org.typelevel | spire_2.12 | 0.17.0-M1 |
org.wildfly.openssl | wildfly-openssl | 1.0.7.Final |
org.xerial | sqlite-jdbc | 3.8.11.2 |
org.xerial.snappy | snappy-java | 1.1.8.4 |
org.yaml | snakeyaml | 1,24 |
oro | oro | 2.0.8 |
pl.edu.icm | JLargeArrays | 1.5 |
software.amazon.ion | ion-java | 1.0.2 |
stax | stax-api | 1.0.1 |