Selvstudium: Opret en brugerdefineret søgemaskine og et spørgsmålssvarsystem
I dette selvstudium kan du få mere at vide om, hvordan du indekserer og forespørger store data, der er indlæst fra en Spark-klynge. Du konfigurerer en Jupyter-notesbog, der udfører følgende handlinger:
- Indlæs forskellige formularer (fakturaer) i en dataramme i en Apache Spark-session
- Analysér dem for at bestemme deres funktioner
- Saml det resulterende output i en datastruktur i tabelformat
- Skriv outputtet til et søgeindeks, der hostes i Azure Cognitive Search
- Udforsk og forespørg om det indhold, du har oprettet
1 – Konfigurer afhængigheder
Vi starter med at importere pakker og oprette forbindelse til de Azure-ressourcer, der bruges i denne arbejdsproces.
import os
from pyspark.sql import SparkSession
from synapse.ml.core.platform import running_on_synapse, find_secret
# Bootstrap Spark Session
spark = SparkSession.builder.getOrCreate()
cognitive_key = find_secret("cognitive-api-key") # replace with your cognitive api key
cognitive_location = "eastus"
translator_key = find_secret("translator-key") # replace with your cognitive api key
translator_location = "eastus"
search_key = find_secret("azure-search-key") # replace with your cognitive api key
search_service = "mmlspark-azure-search"
search_index = "form-demo-index-5"
openai_key = find_secret("openai-api-key") # replace with your open ai api key
openai_service_name = "synapseml-openai"
openai_deployment_name = "gpt-35-turbo"
openai_url = f"https://{openai_service_name}.openai.azure.com/"
2 – Indlæs data i Spark
Denne kode indlæser et par eksterne filer fra en Azure Storage-konto, der bruges til demoformål. Filerne er forskellige fakturaer, og de læses ind i en dataramme.
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
def blob_to_url(blob):
[prefix, postfix] = blob.split("@")
container = prefix.split("/")[-1]
split_postfix = postfix.split("/")
account = split_postfix[0]
filepath = "/".join(split_postfix[1:])
return "https://{}/{}/{}".format(account, container, filepath)
df2 = (
spark.read.format("binaryFile")
.load("wasbs://ignite2021@mmlsparkdemo.blob.core.windows.net/form_subset/*")
.select("path")
.limit(10)
.select(udf(blob_to_url, StringType())("path").alias("url"))
.cache()
)
display(df2)
3 – Anvend formulargenkendelse
Denne kode indlæser transformeren AnalyzeInvoices og overfører en reference til den dataramme, der indeholder fakturaer. Den kalder den færdigbyggede fakturamodel for Azure Forms Analyzer.
from synapse.ml.cognitive import AnalyzeInvoices
analyzed_df = (
AnalyzeInvoices()
.setSubscriptionKey(cognitive_key)
.setLocation(cognitive_location)
.setImageUrlCol("url")
.setOutputCol("invoices")
.setErrorCol("errors")
.setConcurrency(5)
.transform(df2)
.cache()
)
display(analyzed_df)
4 – Forenkler outputtet til formulargenkendelse
Denne kode bruger FormOntologyLearner, en transformer, der analyserer outputtet fra formulargenkendelsestransformere (til Azure AI Document Intelligence) og udleder en datastruktur i tabelformat. Outputtet af AnalyzeInvoices er dynamisk og varierer afhængigt af de funktioner, der er registreret i dit indhold.
FormOntologyLearner udvider værktøjet til transformeren AnalyzeInvoices ved at søge efter mønstre, der kan bruges til at oprette en tabellarisk datastruktur. Hvis du organiserer outputtet i flere kolonner og rækker, bliver det nemmere at analysere nedstrøms.
from synapse.ml.cognitive import FormOntologyLearner
organized_df = (
FormOntologyLearner()
.setInputCol("invoices")
.setOutputCol("extracted")
.fit(analyzed_df)
.transform(analyzed_df)
.select("url", "extracted.*")
.cache()
)
display(organized_df)
Med vores flotte tabeldataramme kan vi fladgør de indlejrede tabeller, der findes i formularerne, med nogle SparkSQL
from pyspark.sql.functions import explode, col
itemized_df = (
organized_df.select("*", explode(col("Items")).alias("Item"))
.drop("Items")
.select("Item.*", "*")
.drop("Item")
)
display(itemized_df)
5 – Tilføj oversættelser
Denne kode indlæser Translate, en transformer, der kalder Azure AI Oversætter-tjenesten i Azure AI-tjenester. Den oprindelige tekst, som er på engelsk i kolonnen "Beskrivelse", maskinoversat til forskellige sprog. Alt output konsolideres i matrixen "output.translations".
from synapse.ml.cognitive import Translate
translated_df = (
Translate()
.setSubscriptionKey(translator_key)
.setLocation(translator_location)
.setTextCol("Description")
.setErrorCol("TranslationError")
.setOutputCol("output")
.setToLanguage(["zh-Hans", "fr", "ru", "cy"])
.setConcurrency(5)
.transform(itemized_df)
.withColumn("Translations", col("output.translations")[0])
.drop("output", "TranslationError")
.cache()
)
display(translated_df)
6 – Oversæt produkter til emojis med OpenAI 🤯
from synapse.ml.cognitive.openai import OpenAIPrompt
from pyspark.sql.functions import trim, split
emoji_template = """
Your job is to translate item names into emoji. Do not add anything but the emoji and end the translation with a comma
Two Ducks: 🦆🦆,
Light Bulb: 💡,
Three Peaches: 🍑🍑🍑,
Two kitchen stoves: ♨️♨️,
A red car: 🚗,
A person and a cat: 🧍🐈,
A {Description}: """
prompter = (
OpenAIPrompt()
.setSubscriptionKey(openai_key)
.setDeploymentName(openai_deployment_name)
.setUrl(openai_url)
.setMaxTokens(5)
.setPromptTemplate(emoji_template)
.setErrorCol("error")
.setOutputCol("Emoji")
)
emoji_df = (
prompter.transform(translated_df)
.withColumn("Emoji", trim(split(col("Emoji"), ",").getItem(0)))
.drop("error", "prompt")
.cache()
)
display(emoji_df.select("Description", "Emoji"))
7 – Udled leverandøradresse kontinent med OpenAI
continent_template = """
Which continent does the following address belong to?
Pick one value from Europe, Australia, North America, South America, Asia, Africa, Antarctica.
Dont respond with anything but one of the above. If you don't know the answer or cannot figure it out from the text, return None. End your answer with a comma.
Address: "6693 Ryan Rd, North Whales",
Continent: Europe,
Address: "6693 Ryan Rd",
Continent: None,
Address: "{VendorAddress}",
Continent:"""
continent_df = (
prompter.setOutputCol("Continent")
.setPromptTemplate(continent_template)
.transform(emoji_df)
.withColumn("Continent", trim(split(col("Continent"), ",").getItem(0)))
.drop("error", "prompt")
.cache()
)
display(continent_df.select("VendorAddress", "Continent"))
8 – Opret et Azure Search-indeks til formularerne
from synapse.ml.cognitive import *
from pyspark.sql.functions import monotonically_increasing_id, lit
(
continent_df.withColumn("DocID", monotonically_increasing_id().cast("string"))
.withColumn("SearchAction", lit("upload"))
.writeToAzureSearch(
subscriptionKey=search_key,
actionCol="SearchAction",
serviceName=search_service,
indexName=search_index,
keyCol="DocID",
)
)
9 – Prøv en søgeforespørgsel
import requests
search_url = "https://{}.search.windows.net/indexes/{}/docs/search?api-version=2019-05-06".format(
search_service, search_index
)
requests.post(
search_url, json={"search": "door"}, headers={"api-key": search_key}
).json()
10 – Byg en chatrobot, der kan bruge Azure Search som et værktøj 🧠🔧
import json
import openai
openai.api_type = "azure"
openai.api_base = openai_url
openai.api_key = openai_key
openai.api_version = "2023-03-15-preview"
chat_context_prompt = f"""
You are a chatbot designed to answer questions with the help of a search engine that has the following information:
{continent_df.columns}
If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be brief. If you need to use the search engine to solve the please output a json in the form of {{"query": "example_query"}}
"""
def search_query_prompt(question):
return f"""
Given the search engine above, what would you search for to answer the following question?
Question: "{question}"
Please output a json in the form of {{"query": "example_query"}}
"""
def search_result_prompt(query):
search_results = requests.post(
search_url, json={"search": query}, headers={"api-key": search_key}
).json()
return f"""
You previously ran a search for "{query}" which returned the following results:
{search_results}
You should use the results to help you answer questions. If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be Brief and mention which query you used to solve the problem.
"""
def prompt_gpt(messages):
response = openai.ChatCompletion.create(
engine=openai_deployment_name, messages=messages, max_tokens=None, top_p=0.95
)
return response["choices"][0]["message"]["content"]
def custom_chatbot(question):
while True:
try:
query = json.loads(
prompt_gpt(
[
{"role": "system", "content": chat_context_prompt},
{"role": "user", "content": search_query_prompt(question)},
]
)
)["query"]
return prompt_gpt(
[
{"role": "system", "content": chat_context_prompt},
{"role": "system", "content": search_result_prompt(query)},
{"role": "user", "content": question},
]
)
except Exception as e:
raise e
11 – Stille vores chatrobot et spørgsmål
custom_chatbot("What did Luke Diaz buy?")
12 – en hurtig dobbeltkontrol
display(
continent_df.where(col("CustomerName") == "Luke Diaz")
.select("Description")
.distinct()
)