Upravit

Sdílet prostřednictvím


microsoftml.resize_image: Resizes an Image

Usage

microsoftml.resize_image(cols: [str, dict, list], width: int = 224,
    height: int = 224, resizing_option: ['IsoPad', 'IsoCrop',
    'Aniso'] = 'IsoCrop', **kargs)

Description

Resizes an image to a specified dimension using a specified resizing method.

Details

resize_image resizes an image to the specified height and width using a specified resizing method. The input variables to this transform must be images, typically the result of the load_image transform.

Arguments

cols

A character string or list of variable names to transform. If dict, the keys represent the names of new variables to be created.

width

Specifies the width of the scaled image in pixels. The default value is 224.

height

Specifies the height of the scaled image in pixels. The default value is 224.

resizing_option

Specified the resizing method to use. Note that all methods are using bilinear interpolation. The options are:

  • "IsoPad": The image is resized such that the aspect ratio is preserved. If needed, the image is padded with black to fit the new width or height.

  • "IsoCrop": The image is resized such that the aspect ratio is preserved. If needed, the image is cropped to fit the new width or height.

  • "Aniso": The image is stretched to the new width and height, without preserving the aspect ratio.

The default value is "IsoPad".

kargs

Additional arguments sent to compute engine.

Returns

An object defining the transform.

See also

load_image, extract_pixels, featurize_image.

Example

'''
Example with images.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear
from microsoftml import load_image, resize_image, extract_pixels
from microsoftml.datasets.image import get_RevolutionAnalyticslogo

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], Label=[True]))

# Loads the images from variable Path, resizes the images to 1x1 pixels
# and trains a neural net.
model1 = rx_neural_network("Label ~ Features", data=train, 
            ml_transforms=[            
                    load_image(cols=dict(Features="Path")), 
                    resize_image(cols="Features", width=1, height=1, resizing="Aniso"), 
                    extract_pixels(cols="Features")], 
            ml_transform_vars=["Path"], 
            num_hidden_nodes=1, num_iterations=1)

# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
# If dnnModel == "AlexNet", the image has to be resized to 227x227.
model2 = rx_fast_linear("Label ~ Features ", data=train, 
            ml_transforms=[            
                    load_image(cols=dict(Features="Path")), 
                    resize_image(cols="Features", width=224, height=224), 
                    extract_pixels(cols="Features")], 
            ml_transform_vars=["Path"], max_iterations=1)

# We predict even if it does not make too much sense on this single image.
print("\nrx_neural_network")
prediction1 = rx_predict(model1, data=train)
print(prediction1)

print("\nrx_fast_linear")
prediction2 = rx_predict(model2, data=train)
print(prediction2)

Output:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [3];
  hidden H [1] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] sigmoid { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 3
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 6 Weights...
Estimated Pre-training MeanError = 0.707823
Iter:1/1, MeanErr=0.707823(0.00%), 0.01M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.707499
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.0820600
Elapsed time: 00:00:00.0090292
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using 2 threads to train.
Automatically choosing a check frequency of 2.
Auto-tuning parameters: L2 = 5.
Auto-tuning parameters: L1Threshold (L1/L2) = 1.
Using model from last iteration.
Not training a calibrator because it is not needed.
Elapsed time: 00:00:01.0852660
Elapsed time: 00:00:00.0132126

rx_neural_network
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0441601
Finished writing 1 rows.
Writing completed.
  PredictedLabel     Score  Probability
0          False -0.028504     0.492875

rx_fast_linear
Beginning processing data.
Rows Read: 1, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.5196788
Finished writing 1 rows.
Writing completed.
  PredictedLabel  Score  Probability
0          False    0.0          0.5