Asynchronní Vstupně-výstupní souborové operace
Synchronní vstupně-výstupní operace (V/V) znamenají, že je metoda zablokována až do dokončení vstupně-výstupní operace a poté metoda vrátí hodnotu. Pomocí asynchronních V/V mohou uživatelé volat BeginRead. Hlavní vlákno může pokračovat ve vykonávání jiné práce a uživatel bude moct později zpracovat data. Také je možné, aby více vstupně-výstupních požadavků čekalo současně.
Abyste byli informováni, kdy jsou tato data k dispozici, můžete zavolat EndRead nebo EndWrite a předáním IAsyncResult odpovídajícího vstupně-výstupní žádosti, kterou jste vydali. Můžete také poskytnout metodu zpětného volání, která by měla zavolat EndRead nebo EndWrite pro zjištění, kolik bajtů bylo přečteno nebo zapsáno. Asynchronní vstupně-výstupní operace mohou nabízet lepší výkon, když mnoho vstupně-výstupních požadavků čeká současně na vyřízení, ale obecně vyžaduje významnou restrukturalizaci aplikace, aby aplikace pracovala správně.
Třída Stream podporuje střídání synchronního a asynchronního čtení a zápisu pro stejný datový proud, bez ohledu na to, zda to operační systém umožňuje. Stream obsahuje výchozí implementaci asynchronních operací čtení a zápisu z hlediska jejich synchronní implementace a poskytuje výchozí implementaci synchronních operací čtení a zápisu z hlediska jejich asynchronní implementace.
Při implementaci třídy odvozené ze Stream, je nezbytné poskytnout implementaci buď pro synchronní nebo asynchronní metody Read a Write. Zatímco přepisování Read a Write je přípustné, výchozí implementace asynchronních metod a BeginRead, EndRead, BeginWrite a EndWrite) bude pracovat s vaší implementaci synchronních metod, toto neposkytuje nejlepší výkon. Podobně synchronní metody Read a Write budou fungovat správně, pokud poskytnete implementaci asynchronních metod, ale výkon je obecně lepší, když implementujete konkrétně synchronní metody. Výchozí implementace ReadByte a WriteByte volá synchronní metody Read a Write s jednoprvkovým bajtovým polem. Pokud máte při odvozování tříd ze Stream vnitřní vyrovnávací paměť, je velmi doporučeno přepsat tyto metody pro přístup k vaší vnitřní vyrovnávací paměti pro lepší výkon.
Datový proud, který se připojuje k záložnímu úložišti přepíše ve výchozím nastavení buď synchronní nebo asynchronní metody Read a Write pro získání funkčnosti od ostatních. Pokud datový proud nepodporuje synchronní nebo asynchronní operace, realizátor potřebuje pouze vyvolat výjimky odpovídajících metod.
Následující příklad je asynchronní implementace hypotetického programu pro hromadné zpracování obrázků a je následován příkladem synchronní implementace. Tento kód je navržen pro provádění operací náročných na výkon procesoru na každém souboru v adresáři. Další informace získáte v tématu Asynchronous Programming Design Patterns.
Imports System
Imports System.IO
Imports System.Threading
Imports System.Runtime.InteropServices
Imports System.Runtime.Remoting.Messaging
Imports System.Security.Permissions
Imports Microsoft.Win32.SafeHandles
Module BulkImageProcAsync
Dim ImageBaseName As String = "tmpImage-"
Dim numImages As Integer = 200
Dim numPixels As Integer = 512 * 512
' ProcessImage has a simple O(N) loop, and you can vary the number
' of times you repeat that loop to make the application more CPU-
' bound or more IO-bound.
Dim processImageRepeats As Integer = 20
' Threads must decrement NumImagesToFinish, and protect
' their access to it through a mutex.
Dim NumImagesToFinish As Integer = numImages
Dim NumImagesMutex(-1) As [Object]
' WaitObject is signalled when all image processing is done.
Dim WaitObject(-1) As [Object]
Structure ImageStateObject
Public pixels() As Byte
Public imageNum As Integer
Public fs As FileStream
End Structure
<SecurityPermissionAttribute(SecurityAction.Demand, Flags:=SecurityPermissionFlag.UnmanagedCode)> _
Sub MakeImageFiles()
Dim sides As Integer = Fix(Math.Sqrt(numPixels))
Console.Write("Making {0} {1}x{1} images... ", numImages, sides)
Dim pixels(numPixels) As Byte
Dim i As Integer
For i = 0 To numPixels
pixels(i) = 255
Next i
Dim fs As FileStream
For i = 0 To numImages
fs = New FileStream(ImageBaseName + i.ToString() + ".tmp", FileMode.Create, FileAccess.Write, FileShare.None, 8192, False)
fs.Write(pixels, 0, pixels.Length)
FlushFileBuffers(fs.SafeFileHandle)
fs.Close()
Next i
fs = Nothing
Console.WriteLine("Done.")
End Sub
Sub ReadInImageCallback(ByVal asyncResult As IAsyncResult)
Dim state As ImageStateObject = CType(asyncResult.AsyncState, ImageStateObject)
Dim stream As Stream = state.fs
Dim bytesRead As Integer = stream.EndRead(asyncResult)
If bytesRead <> numPixels Then
Throw New Exception(String.Format("In ReadInImageCallback, got the wrong number of " + "bytes from the image: {0}.", bytesRead))
End If
ProcessImage(state.pixels, state.imageNum)
stream.Close()
' Now write out the image.
' Using asynchronous I/O here appears not to be best practice.
' It ends up swamping the threadpool, because the threadpool
' threads are blocked on I/O requests that were just queued to
' the threadpool.
Dim fs As New FileStream(ImageBaseName + state.imageNum.ToString() + ".done", FileMode.Create, FileAccess.Write, FileShare.None, 4096, False)
fs.Write(state.pixels, 0, numPixels)
fs.Close()
' This application model uses too much memory.
' Releasing memory as soon as possible is a good idea,
' especially global state.
state.pixels = Nothing
fs = Nothing
' Record that an image is finished now.
SyncLock NumImagesMutex
NumImagesToFinish -= 1
If NumImagesToFinish = 0 Then
Monitor.Enter(WaitObject)
Monitor.Pulse(WaitObject)
Monitor.Exit(WaitObject)
End If
End SyncLock
End Sub
Sub ProcessImage(ByVal pixels() As Byte, ByVal imageNum As Integer)
Console.WriteLine("ProcessImage {0}", imageNum)
Dim y As Integer
' Perform some CPU-intensive operation on the image.
Dim x As Integer
For x = 0 To processImageRepeats
For y = 0 To numPixels
pixels(y) = 1
Next y
Next x
Console.WriteLine("ProcessImage {0} done.", imageNum)
End Sub
Sub ProcessImagesInBulk()
Console.WriteLine("Processing images... ")
Dim t0 As Long = Environment.TickCount
NumImagesToFinish = numImages
Dim readImageCallback As New AsyncCallback(AddressOf ReadInImageCallback)
Dim i As Integer
For i = 0 To numImages
Dim state As New ImageStateObject()
state.pixels = New Byte(numPixels) {}
state.imageNum = i
' Very large items are read only once, so you can make the
' buffer on the FileStream very small to save memory.
Dim fs As New FileStream(ImageBaseName + i.ToString() + ".tmp", FileMode.Open, FileAccess.Read, FileShare.Read, 1, True)
state.fs = fs
fs.BeginRead(state.pixels, 0, numPixels, readImageCallback, state)
Next i
' Determine whether all images are done being processed.
' If not, block until all are finished.
Dim mustBlock As Boolean = False
SyncLock NumImagesMutex
If NumImagesToFinish > 0 Then
mustBlock = True
End If
End SyncLock
If mustBlock Then
Console.WriteLine("All worker threads are queued. " + " Blocking until they complete. numLeft: {0}", NumImagesToFinish)
Monitor.Enter(WaitObject)
Monitor.Wait(WaitObject)
Monitor.Exit(WaitObject)
End If
Dim t1 As Long = Environment.TickCount
Console.WriteLine("Total time processing images: {0}ms", t1 - t0)
End Sub
Sub Cleanup()
Dim i As Integer
For i = 0 To numImages
File.Delete(ImageBaseName + i.ToString + ".tmp")
File.Delete(ImageBaseName + i.ToString + ".done")
Next i
End Sub
Sub TryToClearDiskCache()
' Try to force all pending writes to disk, and clear the
' disk cache of any data.
Dim bytes(100 * (1 << 20)) As Byte
Dim i As Integer
For i = 0 To bytes.Length - 1
bytes(i) = 0
Next i
bytes = Nothing
GC.Collect()
Thread.Sleep(2000)
End Sub
Sub Main(ByVal args() As String)
Console.WriteLine("Bulk image processing sample application," + " using asynchronous IO")
Console.WriteLine("Simulates applying a simple " + "transformation to {0} ""images""", numImages)
Console.WriteLine("(Async FileStream & Threadpool benchmark)")
Console.WriteLine("Warning - this test requires {0} " + "bytes of temporary space", numPixels * numImages * 2)
If args.Length = 1 Then
processImageRepeats = Int32.Parse(args(0))
Console.WriteLine("ProcessImage inner loop - {0}.", processImageRepeats)
End If
MakeImageFiles()
TryToClearDiskCache()
ProcessImagesInBulk()
Cleanup()
End Sub
<DllImport("KERNEL32", SetLastError:=True)> _
Sub FlushFileBuffers(ByVal handle As SafeFileHandle)
End Sub
End Module
using System;
using System.IO;
using System.Threading;
using System.Runtime.InteropServices;
using System.Runtime.Remoting.Messaging;
using System.Security.Permissions;
using Microsoft.Win32.SafeHandles;
public class BulkImageProcAsync
{
public const String ImageBaseName = "tmpImage-";
public const int numImages = 200;
public const int numPixels = 512 * 512;
// ProcessImage has a simple O(N) loop, and you can vary the number
// of times you repeat that loop to make the application more CPU-
// bound or more IO-bound.
public static int processImageRepeats = 20;
// Threads must decrement NumImagesToFinish, and protect
// their access to it through a mutex.
public static int NumImagesToFinish = numImages;
public static Object[] NumImagesMutex = new Object[0];
// WaitObject is signalled when all image processing is done.
public static Object[] WaitObject = new Object[0];
public class ImageStateObject
{
public byte[] pixels;
public int imageNum;
public FileStream fs;
}
[SecurityPermissionAttribute(SecurityAction.Demand, Flags=SecurityPermissionFlag.UnmanagedCode)]
public static void MakeImageFiles()
{
int sides = (int)Math.Sqrt(numPixels);
Console.Write("Making {0} {1}x{1} images... ", numImages,
sides);
byte[] pixels = new byte[numPixels];
int i;
for (i = 0; i < numPixels; i++)
pixels[i] = (byte)i;
FileStream fs;
for (i = 0; i < numImages; i++)
{
fs = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Create, FileAccess.Write, FileShare.None,
8192, false);
fs.Write(pixels, 0, pixels.Length);
FlushFileBuffers(fs.SafeFileHandle);
fs.Close();
}
fs = null;
Console.WriteLine("Done.");
}
public static void ReadInImageCallback(IAsyncResult asyncResult)
{
ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;
Stream stream = state.fs;
int bytesRead = stream.EndRead(asyncResult);
if (bytesRead != numPixels)
throw new Exception(String.Format
("In ReadInImageCallback, got the wrong number of " +
"bytes from the image: {0}.", bytesRead));
ProcessImage(state.pixels, state.imageNum);
stream.Close();
// Now write out the image.
// Using asynchronous I/O here appears not to be best practice.
// It ends up swamping the threadpool, because the threadpool
// threads are blocked on I/O requests that were just queued to
// the threadpool.
FileStream fs = new FileStream(ImageBaseName + state.imageNum +
".done", FileMode.Create, FileAccess.Write, FileShare.None,
4096, false);
fs.Write(state.pixels, 0, numPixels);
fs.Close();
// This application model uses too much memory.
// Releasing memory as soon as possible is a good idea,
// especially global state.
state.pixels = null;
fs = null;
// Record that an image is finished now.
lock (NumImagesMutex)
{
NumImagesToFinish--;
if (NumImagesToFinish == 0)
{
Monitor.Enter(WaitObject);
Monitor.Pulse(WaitObject);
Monitor.Exit(WaitObject);
}
}
}
public static void ProcessImage(byte[] pixels, int imageNum)
{
Console.WriteLine("ProcessImage {0}", imageNum);
int y;
// Perform some CPU-intensive operation on the image.
for (int x = 0; x < processImageRepeats; x += 1)
for (y = 0; y < numPixels; y += 1)
pixels[y] += 1;
Console.WriteLine("ProcessImage {0} done.", imageNum);
}
public static void ProcessImagesInBulk()
{
Console.WriteLine("Processing images... ");
long t0 = Environment.TickCount;
NumImagesToFinish = numImages;
AsyncCallback readImageCallback = new
AsyncCallback(ReadInImageCallback);
for (int i = 0; i < numImages; i++)
{
ImageStateObject state = new ImageStateObject();
state.pixels = new byte[numPixels];
state.imageNum = i;
// Very large items are read only once, so you can make the
// buffer on the FileStream very small to save memory.
FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
state.fs = fs;
fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,
state);
}
// Determine whether all images are done being processed.
// If not, block until all are finished.
bool mustBlock = false;
lock (NumImagesMutex)
{
if (NumImagesToFinish > 0)
mustBlock = true;
}
if (mustBlock)
{
Console.WriteLine("All worker threads are queued. " +
" Blocking until they complete. numLeft: {0}",
NumImagesToFinish);
Monitor.Enter(WaitObject);
Monitor.Wait(WaitObject);
Monitor.Exit(WaitObject);
}
long t1 = Environment.TickCount;
Console.WriteLine("Total time processing images: {0}ms",
(t1 - t0));
}
public static void Cleanup()
{
for (int i = 0; i < numImages; i++)
{
File.Delete(ImageBaseName + i + ".tmp");
File.Delete(ImageBaseName + i + ".done");
}
}
public static void TryToClearDiskCache()
{
// Try to force all pending writes to disk, and clear the
// disk cache of any data.
byte[] bytes = new byte[100 * (1 << 20)];
for (int i = 0; i < bytes.Length; i++)
bytes[i] = 0;
bytes = null;
GC.Collect();
Thread.Sleep(2000);
}
public static void Main(String[] args)
{
Console.WriteLine("Bulk image processing sample application," +
" using asynchronous IO");
Console.WriteLine("Simulates applying a simple " +
"transformation to {0} \"images\"", numImages);
Console.WriteLine("(Async FileStream & Threadpool benchmark)");
Console.WriteLine("Warning - this test requires {0} " +
"bytes of temporary space", (numPixels * numImages * 2));
if (args.Length == 1)
{
processImageRepeats = Int32.Parse(args[0]);
Console.WriteLine("ProcessImage inner loop - {0}.",
processImageRepeats);
}
MakeImageFiles();
TryToClearDiskCache();
ProcessImagesInBulk();
Cleanup();
}
[DllImport("KERNEL32", SetLastError = true)]
private static extern void FlushFileBuffers(SafeFileHandle handle);
}
Zde je synchronní příklad stejné myšlenky.
Imports System
Imports System.IO
Imports System.Threading
Imports System.Runtime.InteropServices
Imports System.Runtime.Remoting.Messaging
Imports System.Security.Permissions
Imports Microsoft.Win32.SafeHandles
Module BulkImageProcSync
Dim ImageBaseName As String = "tmpImage-"
Dim numImages As Integer = 200
Dim numPixels As Integer = 512 * 512
' ProcessImage has a simple O(N) loop, and you can vary the number
' of times you repeat that loop to make the application more CPU-
' bound or more IO-bound.
Dim processImageRepeats As Integer = 20
<SecurityPermissionAttribute(SecurityAction.Demand, Flags:=SecurityPermissionFlag.UnmanagedCode)> _
Sub MakeImageFiles()
Dim sides As Integer = Fix(Math.Sqrt(numPixels))
Console.Write("Making {0} {1}x{1} images... ", numImages, sides)
Dim pixels(numPixels) As Byte
Dim i As Integer
For i = 0 To numPixels
pixels(i) = 255
Next i
Dim fs As FileStream
For i = 0 To numImages
fs = New FileStream(ImageBaseName + i.ToString + ".tmp", FileMode.Create, FileAccess.Write, FileShare.None, 8192, False)
fs.Write(pixels, 0, pixels.Length)
FlushFileBuffers(fs.SafeFileHandle)
fs.Close()
Next i
fs = Nothing
Console.WriteLine("Done.")
End Sub
Sub ProcessImage(ByVal pixels() As Byte, ByVal imageNum As Integer)
Console.WriteLine("ProcessImage {0}", imageNum)
Dim y As Integer
' Perform some CPU-intensive operation on the image.
Dim x As Integer
For x = 0 To processImageRepeats
For y = 0 To numPixels
pixels(y) = 1
Next y
Next x
Console.WriteLine("ProcessImage {0} done.", imageNum)
End Sub
Sub ProcessImagesInBulk()
Console.WriteLine("Processing images... ")
Dim t0 As Long = Environment.TickCount
Dim pixels(numPixels) As Byte
Dim input As FileStream
Dim output As FileStream
Dim i As Integer
For i = 0 To numImages
input = New FileStream(ImageBaseName + i.ToString + ".tmp", FileMode.Open, FileAccess.Read, FileShare.Read, 4196, False)
input.Read(pixels, 0, numPixels)
input.Close()
ProcessImage(pixels, i)
output = New FileStream(ImageBaseName + i.ToString + ".done", FileMode.Create, FileAccess.Write, FileShare.None, 4196, False)
output.Write(pixels, 0, numPixels)
output.Close()
Next i
input = Nothing
output = Nothing
Dim t1 As Long = Environment.TickCount
Console.WriteLine("Total time processing images: {0}ms", t1 - t0)
End Sub
Sub Cleanup()
Dim i As Integer
For i = 0 To numImages
File.Delete(ImageBaseName + i.ToString + ".tmp")
File.Delete(ImageBaseName + i.ToString + ".done")
Next i
End Sub
Sub TryToClearDiskCache()
Dim bytes(100 * (1 << 20)) As Byte
Dim i As Integer
For i = 0 To bytes.Length - 1
bytes(i) = 0
Next i
bytes = Nothing
GC.Collect()
Thread.Sleep(2000)
End Sub
Sub Main(ByVal args() As String)
Console.WriteLine("Bulk image processing sample application," + " using synchronous I/O.")
Console.WriteLine("Simulates applying a simple " + "transformation to {0} ""images.""", numImages)
Console.WriteLine("(ie, Sync FileStream benchmark).")
Console.WriteLine("Warning - this test requires {0} " + "bytes of temporary space", numPixels * numImages * 2)
If args.Length = 1 Then
processImageRepeats = Int32.Parse(args(0))
Console.WriteLine("ProcessImage inner loop {0}", processImageRepeats)
End If
MakeImageFiles()
TryToClearDiskCache()
ProcessImagesInBulk()
Cleanup()
End Sub
<DllImport("KERNEL32", SetLastError:=True)> _
Sub FlushFileBuffers(ByVal handle As SafeFileHandle)
End Sub
End Module
using System;
using System.IO;
using System.Threading;
using System.Runtime.InteropServices;
using System.Runtime.Remoting.Messaging;
using System.Security.Permissions;
using Microsoft.Win32.SafeHandles;
public class BulkImageProcSync
{
public const String ImageBaseName = "tmpImage-";
public const int numImages = 200;
public const int numPixels = 512 * 512;
// ProcessImage has a simple O(N) loop, and you can vary the number
// of times you repeat that loop to make the application more CPU-
// bound or more IO-bound.
public static int processImageRepeats = 20;
[SecurityPermissionAttribute(SecurityAction.Demand, Flags=SecurityPermissionFlag.UnmanagedCode)]
public static void MakeImageFiles()
{
int sides = (int)Math.Sqrt(numPixels);
Console.Write("Making {0} {1}x{1} images... ", numImages,
sides);
byte[] pixels = new byte[numPixels];
int i;
for (i = 0; i < numPixels; i++)
pixels[i] = (byte)i;
FileStream fs;
for (i = 0; i < numImages; i++)
{
fs = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Create, FileAccess.Write, FileShare.None,
8192, false);
fs.Write(pixels, 0, pixels.Length);
FlushFileBuffers(fs.SafeFileHandle);
fs.Close();
}
fs = null;
Console.WriteLine("Done.");
}
public static void ProcessImage(byte[] pixels, int imageNum)
{
Console.WriteLine("ProcessImage {0}", imageNum);
int y;
// Perform some CPU-intensive operation on the image.
for (int x = 0; x < processImageRepeats; x += 1)
for (y = 0; y < numPixels; y += 1)
pixels[y] += 1;
Console.WriteLine("ProcessImage {0} done.", imageNum);
}
public static void ProcessImagesInBulk()
{
Console.WriteLine("Processing images... ");
long t0 = Environment.TickCount;
byte[] pixels = new byte[numPixels];
FileStream input;
FileStream output;
for (int i = 0; i < numImages; i++)
{
input = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Open, FileAccess.Read, FileShare.Read,
4196, false);
input.Read(pixels, 0, numPixels);
input.Close();
ProcessImage(pixels, i);
output = new FileStream(ImageBaseName + i + ".done",
FileMode.Create, FileAccess.Write, FileShare.None,
4196, false);
output.Write(pixels, 0, numPixels);
output.Close();
}
input = null;
output = null;
long t1 = Environment.TickCount;
Console.WriteLine("Total time processing images: {0}ms",
(t1 - t0));
}
public static void Cleanup()
{
for (int i = 0; i < numImages; i++)
{
File.Delete(ImageBaseName + i + ".tmp");
File.Delete(ImageBaseName + i + ".done");
}
}
public static void TryToClearDiskCache()
{
byte[] bytes = new byte[100 * (1 << 20)];
for (int i = 0; i < bytes.Length; i++)
bytes[i] = 0;
bytes = null;
GC.Collect();
Thread.Sleep(2000);
}
public static void Main(String[] args)
{
Console.WriteLine("Bulk image processing sample application," +
" using synchronous I/O.");
Console.WriteLine("Simulates applying a simple " +
"transformation to {0} \"images.\"", numImages);
Console.WriteLine("(ie, Sync FileStream benchmark).");
Console.WriteLine("Warning - this test requires {0} " +
"bytes of temporary space", (numPixels * numImages * 2));
if (args.Length == 1)
{
processImageRepeats = Int32.Parse(args[0]);
Console.WriteLine("ProcessImage inner loop � {0}",
processImageRepeats);
}
MakeImageFiles();
TryToClearDiskCache();
ProcessImagesInBulk();
Cleanup();
}
[DllImport("KERNEL32", SetLastError = true)]
private static extern void FlushFileBuffers(SafeFileHandle handle);
}