Sdílet prostřednictvím


NormalizingTransformer.CdfNormalizerModelParameters<TData> Třída

Definice

Parametry modelu generované kumulativními transformacemi normalizace rozdělení Funkce kumulativní hustoty je parametrizována Mean a StandardDeviation jak je pozorováno při montáži.

public sealed class NormalizingTransformer.CdfNormalizerModelParameters<TData> : Microsoft.ML.Transforms.NormalizingTransformer.NormalizerModelParametersBase
type NormalizingTransformer.CdfNormalizerModelParameters<'Data> = class
    inherit NormalizingTransformer.NormalizerModelParametersBase
Public NotInheritable Class NormalizingTransformer.CdfNormalizerModelParameters(Of TData)
Inherits NormalizingTransformer.NormalizerModelParametersBase

Parametry typu

TData
Dědičnost
NormalizingTransformer.CdfNormalizerModelParameters<TData>

Příklady

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeLogMeanVariance
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
                new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
                new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
                new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeLogMeanVariance normalizes the data based on the computed
            // mean and variance of the logarithm of the data.
            // Uses Cumulative distribution function as output.
            var normalize = mlContext.Transforms.NormalizeLogMeanVariance(
                "Features", useCdf: true);

            // NormalizeLogMeanVariance normalizes the data based on the computed
            // mean and variance of the logarithm of the data.
            var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance(
                "Features", useCdf: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data
            // below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
            var noCdfData = normalizeNoCdfTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.1587, 0.1587, 0.8654, 0.0000, 0.8413
            //  0.8413, 0.8413, 0.5837, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0940, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0000, 0.0000, 0.1587

            var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.8854, 1.8854, 5.2970, 0.0000, 7670682000000000000000000000000000000.0000
            //  4.7708, 4.7708, 3.0925, 0.0000, -7670682000000000000000000000000000000.0000
            // -1.0000,-1.0000, 0.8879, 0.0000, -1.0000
            // -3.8854,-3.8854,-3.5213, 0.0000, -0.9775

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters. If we have multiple columns
            // transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as CdfNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine("The 1-index value in resulting array would be " +
                "produce by:");

            Console.WriteLine("y = 0.5* (1 + ERF((Math.Log(x)- " + transformParams
                .Mean[1] + ") / (" + transformParams.StandardDeviation[1] +
                " * sqrt(2)))");

            // ERF is https://en.wikipedia.org/wiki/Error_function.
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = 0.5* (1 + ERF((Math.Log(x)- 0.3465736) / (0.3465736 * sqrt(2)))
            var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(
                0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
            var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
            var scale = noCdfParams.Scale[1];
            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by: y = (x - ({offset})) * {scale}");
            // Expected output:
            // The 1-index value in resulting array would be produce by: y = (x - (0.3465736)) * 2.88539
        }

        private class DataPoint
        {
            [VectorType(5)]
            public float[] Features { get; set; }
        }
    }
}

Vlastnosti

Mean

Střední hodnoty. V skalárním případě se jedná o jednu hodnotu. V případě vektoru je to délka rovna počtu slotů.

StandardDeviation

Směrodatná odchylka V skalárním případě se jedná o jednu hodnotu. V případě vektoru je to délka rovna počtu slotů.

UseLog

Jestli bychom měli použít logaritmus na vstup jako první.

Platí pro