SymbolicSgdLogisticRegressionBinaryTrainer Třída
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Předpověď IEstimator<TTransformer> cíle pomocí lineárního binárního klasifikačního modelu trénovaného pomocí symbolického stochastického gradientního sestupu.
public sealed class SymbolicSgdLogisticRegressionBinaryTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>,Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>
type SymbolicSgdLogisticRegressionBinaryTrainer = class
inherit TrainerEstimatorBase<BinaryPredictionTransformer<CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>, CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>
Public NotInheritable Class SymbolicSgdLogisticRegressionBinaryTrainer
Inherits TrainerEstimatorBase(Of BinaryPredictionTransformer(Of CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator)), CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator))
- Dědičnost
-
TrainerEstimatorBase<BinaryPredictionTransformer<CalibratedModelParametersBase<LinearBinaryModelParameters,PlattCalibrator>>,CalibratedModelParametersBase<LinearBinaryModelParameters,PlattCalibrator>>SymbolicSgdLogisticRegressionBinaryTrainer
Poznámky
K vytvoření tohoto trenéra použijte SymbolStochasticGradientDescent nebo SymbolStochasticGradientDescent(Options).
Vstupní a výstupní sloupce
Vstupní data sloupce popisku musí být Boolean. Vstupní funkce sloupcová data musí být vektorem známé velikosti Single.
Tento trenér vypíše následující sloupce:
Název výstupního sloupce | Typ sloupce | Description | |
---|---|---|---|
Score |
Single | Nevázané skóre, které model vypočítal. | |
PredictedLabel |
Boolean | Predikovaný popisek na základě znaménka skóre. Záporná skóre mapuje na false a kladná skóre se mapuje na true . |
|
Probability |
Single | Pravděpodobnost vypočítaná kalibrací skóre hodnoty true jako popisku. Hodnota pravděpodobnosti je v rozsahu [0, 1]. |
Charakteristiky trenéra
Úloha strojového učení | Binární klasifikace |
Vyžaduje se normalizace? | Yes |
Vyžaduje se ukládání do mezipaměti? | No |
Požadovaný NuGet kromě Microsoft.ML | Microsoft.ML.Mkl.Components |
Exportovatelné do ONNX | Yes |
Podrobnosti trénovacího algoritmu
Symbolický stochastický gradientní sestup je algoritmus, který vytváří své předpovědi vyhledáním oddělení hyperplanu. Například s hodnotami funkcí $f 0, f1,..., f_{D-1}$, je predikce dána určením strany nadroviny, do které bod spadá. To je stejné jako znaménko váženého součtu funkce, tj. $\sum_{i = 0}^{D-1} (w_i * f_i) + b$, kde $w_0, w_1,..., w_{D-1}$ jsou váhy vypočítané algoritmem a $b$ je předsudky vypočítané algoritmem.
Zatímco většina symbolických algoritmů sestupného gradientního sestupu je ze své podstaty sekvenční – v každém kroku závisí zpracování aktuálního příkladu na parametrech získaných z předchozích příkladů. Tento algoritmus trénuje místní modely v samostatných vláknech a probabilistickém modelu cobminer, který místním modelům umožňuje kombinovat stejný výsledek jako sekvenční symbolický stochastický gradientní sestup v očekávání.
Další informace naleznete v části Parallel Stochastic Gradient Sestup s kombinátory zvuku.
Odkazy na příklady použití najdete v části Viz také.
Pole
FeatureColumn |
Sloupec funkcí, který trenér očekává. (Zděděno od TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Sloupec popisku, který trenér očekává. Může to být |
WeightColumn |
Sloupec hmotnosti, který trenér očekává. Může to být |
Vlastnosti
Info |
Předpověď IEstimator<TTransformer> cíle pomocí lineárního binárního klasifikačního modelu trénovaného pomocí symbolického stochastického gradientního sestupu. |
Metody
Fit(IDataView, LinearModelParameters) |
Pokračuje v trénování SymbolicSgdLogisticRegressionBinaryTrainer používání již natrénovaného |
Fit(IDataView) |
Vlaky a vrací hodnotu ITransformer. (Zděděno od TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Předpověď IEstimator<TTransformer> cíle pomocí lineárního binárního klasifikačního modelu trénovaného pomocí symbolického stochastického gradientního sestupu. (Zděděno od TrainerEstimatorBase<TTransformer,TModel>) |
Metody rozšíření
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Připojte k řetězci estimátoru kontrolní bod ukládání do mezipaměti. Tím zajistíte, aby podřízené estimátory byly vytrénovány proti datům uloženým v mezipaměti. Před průchodem více dat je užitečné mít kontrolní bod ukládání do mezipaměti. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Vzhledem k estimátoru vraťte zalamovací objekt, který zavolá delegáta jednou Fit(IDataView) . Často je důležité, aby odhadovač vrátil informace o tom, co bylo vhodné, což je důvod, proč Fit(IDataView) metoda vrací konkrétně typ objekt, nikoli jen obecné ITransformer. Ve stejnou dobu se však často vytvářejí do kanálů s mnoha objekty, takže možná budeme muset vytvořit řetězec estimátorů, kde EstimatorChain<TLastTransformer> je odhadovač, IEstimator<TTransformer> pro který chceme získat transformátor, zakopán někde v tomto řetězci. Pro tento scénář můžeme prostřednictvím této metody připojit delegáta, který bude volána po zavolání fit. |
Platí pro
Viz také
- SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, Int32)
- SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SymbolicSgdLogisticRegressionBinaryTrainer+Options)
- SymbolicSgdLogisticRegressionBinaryTrainer.Options