Sdílet prostřednictvím


TimeSeriesCatalog.ForecastBySsa Metoda

Definice

Model SSA (Singular Spectrum Analysis) pro prognózování jednorozměrných časových řad Podrobnosti o modelu najdete v http://arxiv.org/pdf/1206.6910.pdftématu .

public static Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator ForecastBySsa (this Microsoft.ML.ForecastingCatalog catalog, string outputColumnName, string inputColumnName, int windowSize, int seriesLength, int trainSize, int horizon, bool isAdaptive = false, float discountFactor = 1, Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod rankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, int? rank = default, int? maxRank = default, bool shouldStabilize = true, bool shouldMaintainInfo = false, Microsoft.ML.Transforms.TimeSeries.GrowthRatio? maxGrowth = default, string confidenceLowerBoundColumn = default, string confidenceUpperBoundColumn = default, float confidenceLevel = 0.95, bool variableHorizon = false);
static member ForecastBySsa : Microsoft.ML.ForecastingCatalog * string * string * int * int * int * int * bool * single * Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod * Nullable<int> * Nullable<int> * bool * bool * Nullable<Microsoft.ML.Transforms.TimeSeries.GrowthRatio> * string * string * single * bool -> Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator
<Extension()>
Public Function ForecastBySsa (catalog As ForecastingCatalog, outputColumnName As String, inputColumnName As String, windowSize As Integer, seriesLength As Integer, trainSize As Integer, horizon As Integer, Optional isAdaptive As Boolean = false, Optional discountFactor As Single = 1, Optional rankSelectionMethod As RankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, Optional rank As Nullable(Of Integer) = Nothing, Optional maxRank As Nullable(Of Integer) = Nothing, Optional shouldStabilize As Boolean = true, Optional shouldMaintainInfo As Boolean = false, Optional maxGrowth As Nullable(Of GrowthRatio) = Nothing, Optional confidenceLowerBoundColumn As String = Nothing, Optional confidenceUpperBoundColumn As String = Nothing, Optional confidenceLevel As Single = 0.95, Optional variableHorizon As Boolean = false) As SsaForecastingEstimator

Parametry

catalog
ForecastingCatalog

Katalogu.

outputColumnName
String

Název sloupce, který je výsledkem transformace .inputColumnName

inputColumnName
String

Název sloupce, který chcete transformovat. Pokud je hodnota nastavená na null, použije se hodnota outputColumnName jako zdroj. Vektor obsahuje první tři hodnoty: Alert, Raw Score a P-Value.

windowSize
Int32

Délka okna řady pro sestavení matice trajektorie (parametr L).

seriesLength
Int32

Délka řad, která se uchovává ve vyrovnávací paměti pro modelování (parametr N).

trainSize
Int32

Délka řady od začátku používané pro trénování.

horizon
Int32

Počet hodnot, které se mají předpovědět.

isAdaptive
Boolean

Příznak určující, jestli je model adaptivní.

discountFactor
Single

Faktor slevy v [0,1] použitý pro online aktualizace.

rankSelectionMethod
RankSelectionMethod

Metoda výběru pořadí.

rank
Nullable<Int32>

Požadované pořadí podprostoru použitého pro projekci SSA (parametr r). Tento parametr by měl být v rozsahu [1, windowSize]. Pokud je nastavená hodnota null, pořadí se automaticky určí na základě minimalizace predikčních chyb.

maxRank
Nullable<Int32>

Maximální pořadí, které se zvažuje během procesu výběru pořadí. Pokud ji nezadáte (tj. nastavíte na hodnotu null), nastaví se na hodnotu windowSize – 1.

shouldStabilize
Boolean

Příznak určující, zda má být model stabilizován.

shouldMaintainInfo
Boolean

Příznak určující, jestli je potřeba udržovat metadata pro model.

maxGrowth
Nullable<GrowthRatio>

Maximální růst exponenciálního trendu.

confidenceLowerBoundColumn
String

Název dolního sloupce intervalu spolehlivosti. Pokud není zadán, intervaly spolehlivosti se nevypočítávají.

confidenceUpperBoundColumn
String

Název horního sloupce intervalu spolehlivosti. Pokud není zadán, intervaly spolehlivosti se nevypočítávají.

confidenceLevel
Single

Úroveň spolehlivosti pro prognózování

variableHorizon
Boolean

Tuto hodnotu nastavte na hodnotu true, pokud se horizont změní po trénování (v době předpovědi).

Návraty

Příklady

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class Forecasting
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5);

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class ForecastingWithConfidenceInternal
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5,
                confidenceLevel: 0.95f,
                confidenceLowerBoundColumn: "ConfidenceLowerBound",
                confidenceUpperBoundColumn: "ConfidenceUpperBound");

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
            // Confidence intervals:
            // [0.3451088 - 3.609343] [-0.7967533 - 2.83774] [-0.058467 - 3.579552] [1.61505 - 5.259968] [2.349299 - 6.183623]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast,
                forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
        }

        static void PrintForecastValuesAndIntervals(float[] forecast, float[]
            confidenceIntervalLowerBounds, float[] confidenceIntervalUpperBounds)
        {
            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast));
            Console.WriteLine($"Confidence intervals:");
            for (int index = 0; index < forecast.Length; index++)
                Console.Write($"[{confidenceIntervalLowerBounds[index]} -" +
                    $" {confidenceIntervalUpperBounds[index]}] ");
            Console.WriteLine();
        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
            public float[] ConfidenceLowerBound { get; set; }
            public float[] ConfidenceUpperBound { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Platí pro