StandardTrainersCatalog.OneVersusAll<TModel> Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
OneVersusAllTrainerVytvořte , která predikuje cíl s více třídami pomocí strategie 1-versus-all s odhadem binární klasifikace určeným binaryEstimator
nástrojem .
public static Microsoft.ML.Trainers.OneVersusAllTrainer OneVersusAll<TModel> (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<TModel>,TModel> binaryEstimator, string labelColumnName = "Label", bool imputeMissingLabelsAsNegative = false, Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> calibrator = default, int maximumCalibrationExampleCount = 1000000000, bool useProbabilities = true) where TModel : class;
static member OneVersusAll : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<'Model>, 'Model (requires 'Model : null)> * string * bool * Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> * int * bool -> Microsoft.ML.Trainers.OneVersusAllTrainer (requires 'Model : null)
<Extension()>
Public Function OneVersusAll(Of TModel As Class) (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, binaryEstimator As ITrainerEstimator(Of BinaryPredictionTransformer(Of TModel), TModel), Optional labelColumnName As String = "Label", Optional imputeMissingLabelsAsNegative As Boolean = false, Optional calibrator As IEstimator(Of ISingleFeaturePredictionTransformer(Of ICalibrator)) = Nothing, Optional maximumCalibrationExampleCount As Integer = 1000000000, Optional useProbabilities As Boolean = true) As OneVersusAllTrainer
Parametry typu
- TModel
Typ modelu. Tento parametr typu se obvykle odvozuje automaticky z binaryEstimator
.
Parametry
Objekt trenéra katalogu klasifikace s více třídami.
- binaryEstimator
- ITrainerEstimator<BinaryPredictionTransformer<TModel>,TModel>
Instance binárního souboru ITrainerEstimator<TTransformer,TModel> používaného jako základní trenér.
- labelColumnName
- String
Název sloupce popisku.
- imputeMissingLabelsAsNegative
- Boolean
Jestli chcete s chybějícími popisky zacházet jako s negativními popisky, místo aby je nezůstávali.
- calibrator
- IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>
Kalibrátor. Pokud kalibrátor není explicitně zadaný, použije se výchozí hodnota Microsoft.ML.Calibrators.PlattCalibratorTrainer
- maximumCalibrationExampleCount
- Int32
Počet instancí pro trénování kalibrátoru
- useProbabilities
- Boolean
K identifikaci kategorie nejvyššího skóre použijte pravděpodobnosti (vs. nezpracované výstupy).
Návraty
Příklady
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class OneVersusAll
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply OneVersusAll multiclass meta trainer on top of
// binary trainer.
.Append(mlContext.MulticlassClassification.Trainers
.OneVersusAll(
mlContext.BinaryClassification.Trainers.SdcaLogisticRegression()));
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.90
// Macro Accuracy: 0.90
// Log Loss: 0.36
// Log Loss Reduction: 0.68
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 152 | 0 | 8 | 0.9500
// 1 || 0 | 168 | 9 | 0.9492
// 2 || 17 | 15 | 131 | 0.8037
// ||========================
// Precision ||0.8994 |0.9180 |0.8851 |
}
// Generates random uniform doubles in [-0.5, 0.5)
// range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Poznámky
V jedné a všech strategiích se binární klasifikační algoritmus používá k trénování jednoho klasifikátoru pro každou třídu, která odlišuje danou třídu od všech ostatních tříd. Predikce se pak provádí spuštěním těchto binárních klasifikátorů a výběrem předpovědi s nejvyšším skóre spolehlivosti.