TextLoader.Load(IMultiStreamSource) Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Načte data z source
do IDataView.
public Microsoft.ML.IDataView Load (Microsoft.ML.Data.IMultiStreamSource source);
abstract member Load : Microsoft.ML.Data.IMultiStreamSource -> Microsoft.ML.IDataView
override this.Load : Microsoft.ML.Data.IMultiStreamSource -> Microsoft.ML.IDataView
Public Function Load (source As IMultiStreamSource) As IDataView
Parametry
- source
- IMultiStreamSource
Zdroj, ze kterého se mají načíst data.
Návraty
Implementuje
Příklady
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.DataOperations
{
public static class LoadingText
{
// This examples shows all the ways to load data with TextLoader.
public static void Example()
{
// Create 5 data files to illustrate different loading methods.
var dataFiles = new List<string>();
var random = new Random(1);
var dataDirectoryName = "DataDir";
Directory.CreateDirectory(dataDirectoryName);
for (int i = 0; i < 5; i++)
{
var fileName = Path.Combine(dataDirectoryName, $"Data_{i}.csv");
dataFiles.Add(fileName);
using (var fs = File.CreateText(fileName))
{
// Write without header with 10 random columns, forcing
// approximately 80% of values to be 0.
for (int line = 0; line < 10; line++)
{
var sb = new StringBuilder();
for (int pos = 0; pos < 10; pos++)
{
var value = random.NextDouble();
sb.Append((value < 0.8 ? 0 : value).ToString() + '\t');
}
fs.WriteLine(sb.ToString(0, sb.Length - 1));
}
}
}
// Create a TextLoader.
var mlContext = new MLContext();
var loader = mlContext.Data.CreateTextLoader(
columns: new[]
{
new TextLoader.Column("Features", DataKind.Single, 0, 9)
},
hasHeader: false
);
// Load a single file from path.
var singleFileData = loader.Load(dataFiles[0]);
PrintRowCount(singleFileData);
// Expected Output:
// 10
// Load all 5 files from path.
var multipleFilesData = loader.Load(dataFiles.ToArray());
PrintRowCount(multipleFilesData);
// Expected Output:
// 50
// Load all files using path wildcard.
var multipleFilesWildcardData =
loader.Load(Path.Combine(dataDirectoryName, "Data_*.csv"));
PrintRowCount(multipleFilesWildcardData);
// Expected Output:
// 50
// Create a TextLoader with user defined type.
var loaderWithCustomType =
mlContext.Data.CreateTextLoader<Data>(hasHeader: false);
// Load a single file from path.
var singleFileCustomTypeData = loaderWithCustomType.Load(dataFiles[0]);
PrintRowCount(singleFileCustomTypeData);
// Expected Output:
// 10
// Create a TextLoader with unknown column length to illustrate
// how a data sample may be used to infer column size.
var dataSample = new MultiFileSource(dataFiles[0]);
var loaderWithUnknownLength = mlContext.Data.CreateTextLoader(
columns: new[]
{
new TextLoader.Column("Features",
DataKind.Single,
new[] { new TextLoader.Range(0, null) })
},
dataSample: dataSample
);
var dataWithInferredLength = loaderWithUnknownLength.Load(dataFiles[0]);
var featuresColumn = dataWithInferredLength.Schema.GetColumnOrNull("Features");
if (featuresColumn.HasValue)
Console.WriteLine(featuresColumn.Value.ToString());
// Expected Output:
// Features: Vector<Single, 10>
//
// ML.NET infers the correct length of 10 for the Features column,
// which is of type Vector<Single>.
PrintRowCount(dataWithInferredLength);
// Expected Output:
// 10
// Save the data with 10 rows to a text file to illustrate the use of
// sparse format.
var sparseDataFileName = Path.Combine(dataDirectoryName, "saved_data.tsv");
using (FileStream stream = new FileStream(sparseDataFileName, FileMode.Create))
mlContext.Data.SaveAsText(singleFileData, stream);
// Since there are many zeroes in the data, it will be saved in a sparse
// representation to save disk space. The data may be forced to be saved
// in a dense representation by setting forceDense to true. The sparse
// data will look like the following:
//
// 10 7:0.943862259
// 10 3:0.989767134
// 10 0:0.949778438 8:0.823028445 9:0.886469543
//
// The sparse representation of the first row indicates that there are
// 10 columns, the column 7 (8-th column) has value 0.943862259, and other
// omitted columns have value 0.
// Create a TextLoader that allows sparse input.
var sparseLoader = mlContext.Data.CreateTextLoader(
columns: new[]
{
new TextLoader.Column("Features", DataKind.Single, 0, 9)
},
allowSparse: true
);
// Load the saved sparse data.
var sparseData = sparseLoader.Load(sparseDataFileName);
PrintRowCount(sparseData);
// Expected Output:
// 10
// Create a TextLoader without any column schema using TextLoader.Options.
// Since the sparse data file was saved with ML.NET, it has the schema
// enoded in its header that the loader can understand:
//
// #@ TextLoader{
// #@ sep=tab
// #@ col=Features:R4:0-9
// #@ }
//
// The schema syntax is unimportant since it is only used internally. In
// short, it tells the loader that the values are separated by tabs, and
// that columns 0-9 in the text file are to be read into one column named
// "Features" of type Single (internal type R4).
var options = new TextLoader.Options()
{
AllowSparse = true,
};
var dataSampleWithSchema = new MultiFileSource(sparseDataFileName);
var sparseLoaderWithSchema =
mlContext.Data.CreateTextLoader(options, dataSample: dataSampleWithSchema);
// Load the saved sparse data.
var sparseDataWithSchema = sparseLoaderWithSchema.Load(sparseDataFileName);
PrintRowCount(sparseDataWithSchema);
// Expected Output:
// 10
}
private static void PrintRowCount(IDataView idv)
{
// IDataView is lazy so we need to iterate through it
// to get the number of rows.
long rowCount = 0;
using (var cursor = idv.GetRowCursor(idv.Schema))
while (cursor.MoveNext())
rowCount++;
Console.WriteLine(rowCount);
}
private class Data
{
[LoadColumn(0, 9)]
public float[] Features { get; set; }
}
}
}