Upravit

Sdílet prostřednictvím


Quickstart: Use the Bing Visual Search JavaScript client library

Use this quickstart to begin getting image insights from the Bing Visual Search service, using the JavaScript client library. While Bing Visual Search has a REST API compatible with most programming languages, the client library provides an easy way to integrate the service into your applications. The source code for this sample can be found on GitHub.

Reference documentation | Library source code | Package (NPM) | Samples

Prerequisites

  • Node.js.
  • The Bing Visual Search client library for JavaScript.
    • To set up a console application using the Bing Visual Search client library, run the following commands:
      1. npm install ms-rest-azure
      2. npm install azure-cognitiveservices-visualsearch.

Create and initialize the application

  1. Create a new JavaScript file in your favorite IDE or editor, and add the following requirements. Then create variables for your subscription key, Custom Configuration ID, and file path to the image you want to upload.

    const os = require("os");
    const async = require('async');
    const fs = require('fs');
    const Search = require('azure-cognitiveservices-visualsearch');
    const CognitiveServicesCredentials = require('ms-rest-azure').CognitiveServicesCredentials;
    
    let keyVar = 'YOUR-VISUAL-SEARCH-ACCESS-KEY';
    let credentials = new CognitiveServicesCredentials(keyVar);
    let filePath = "../Data/image.jpg";
    
  2. Instantiate the client.

    let visualSearchClient = new Search.VisualSearchClient(credentials);
    

Search for images

  1. Use fs.createReadStream() to read in your image file, and create variables for your search request and results. Then use the client to search images.

    let fileStream = fs.createReadStream(filePath);
    let visualSearchRequest = JSON.stringify({});
    let visualSearchResults;
    try {
        visualSearchResults = await visualSearchClient.images.visualSearch({
            image: fileStream,
            knowledgeRequest: visualSearchRequest
        });
        console.log("Search visual search request with binary of image");
    } catch (err) {
        console.log("Encountered exception. " + err.message);
    }
    
  2. Parse the results of the previous query:

    // Visual Search results
    if (visualSearchResults.image.imageInsightsToken) {
        console.log(`Uploaded image insights token: ${visualSearchResults.image.imageInsightsToken}`);
    }
    else {
        console.log("Couldn't find image insights token!");
    }
    
    // List of tags
    if (visualSearchResults.tags.length > 0) {
        let firstTagResult = visualSearchResults.tags[0];
        console.log(`Visual search tag count: ${visualSearchResults.tags.length}`);
    
        // List of actions in first tag
        if (firstTagResult.actions.length > 0) {
            let firstActionResult = firstTagResult.actions[0];
            console.log(`First tag action count: ${firstTagResult.actions.length}`);
            console.log(`First tag action type: ${firstActionResult.actionType}`);
        }
        else {
            console.log("Couldn't find tag actions!");
        }
    
    }
    else {
        console.log("Couldn't find image tags!");
    }
    
    

Next steps