Sdílet prostřednictvím


Intelligent Insights pro monitorování a řešení potíží s výkonem databáze (Preview)

Platí pro:Azure SQL DatabaseAzure SQL Managed Instance

Intelligent Insights ve službě Azure SQL Database a azure SQL Managed Instance vám umožní zjistit, co se děje s výkonem databáze.

Intelligent Insights používá integrované inteligentní funkce k nepřetržitému monitorování využití databáze prostřednictvím umělé inteligence a zjišťování rušivých událostí, které způsobují nízký výkon. Po zjištění se provede podrobná analýza, která vygeneruje protokol prostředků Intelligent Insights nazývaný SQLInsights (nesouvisející s vyřazenými Azure Monitor SQL Insights) s inteligentním posouzením problémů. Toto posouzení se skládá z analýzy původní příčiny problému s výkonem databáze a pokud je to možné, doporučení pro vylepšení výkonu.

Co pro vás může Intelligent Insights dělat?

Intelligent Insights je jedinečná funkce integrované inteligentní funkce Azure, která poskytuje následující hodnotu:

  • Proaktivní monitorování
  • Přizpůsobené přehledy výkonu
  • Včasné zjištění snížení výkonu databáze
  • Analýza původní příčiny zjištěných problémů
  • Doporučení ke zlepšení výkonu
  • Škálovací schopnosti na stovky tisíc databází
  • Pozitivní dopad na prostředky DevOps a celkové náklady na vlastnictví

Jak Funguje Intelligent Insights

Intelligent Insights analyzuje výkon databáze porovnáním databázové zátěže z poslední hodiny se základní zátěží za posledních sedm dní. Databázové úlohy se skládají z dotazů, které jsou nejvýraznější pro výkon databáze, jako jsou nejopakovanější a největší dotazy. Vzhledem k tomu, že každá databáze je jedinečná na základě své struktury, dat, využití a aplikace, je každý směrný plán úloh, který se generuje, specifický a jedinečný pro danou úlohu. Intelligent Insights, nezávisle na směrném plánu úloh, také monitoruje absolutní provozní prahové hodnoty a zjišťuje problémy s nadměrnými dobami čekání, kritickými výjimkami a problémy s parametrizací dotazů, které můžou ovlivnit výkon.

Po zjištění problému se snížením výkonu z několika pozorovaných metrik pomocí umělé inteligence se provede analýza. Vygeneruje se diagnostický protokol s inteligentním přehledem o tom, co se děje s vaší databází. Intelligent Insights usnadňuje sledování problému s výkonem databáze od jeho prvního objevení až do vyřešení. Každý zjištěný problém se sleduje prostřednictvím životního cyklu od počáteční detekce problému a ověření zlepšení výkonu až po dokončení.

Pracovní postup analýzy výkonu databáze

Metriky používané k měření a zjišťování problémů s výkonem databáze jsou založeny na době trvání dotazů, požadavcích na vypršení časového limitu, nadměrné době čekání a chybných požadavcích. Další informace o metrikách najdete v tématu Detekce metrik.

Zjištěné snížení výkonu databáze se zaznamenává v protokolu Intelligent Insights SQLInsights s inteligentními položkami, které se skládají z následujících vlastností:

Vlastnost Podrobnosti
Informace o databázi Metadata o databázi, na které bylo zjištěno poznání, jako je URI zdroje.
Pozorovaný časový rozsah Počáteční a koncový čas pro období zjištěného vhledu
Ovlivněné metriky Metriky, které způsobily generování přehledu:
  • Doba trvání dotazu se zvyšuje [sekundy].
  • Nadměrné čekání [sekundy].
  • Žádosti o vypršení časového limitu [procento].
  • Požadavky, které skončily chybou [procento].
Hodnota dopadu Hodnota měřené metriky
Ovlivněné dotazy a kódy chyb Hash dotazu nebo chybový kód. Ty se dají použít ke snadné korelaci s ovlivněnými dotazy. Zobrazí se metriky, které se skládají z prodloužení doby trvání dotazu, doby čekání, počtu časových limitů nebo kódů chyb.
Detekce Detekce identifikovaná v databázi během události. Existuje 15 vzorů detekce. Další informace najdete v tématu Řešení potíží s výkonem databáze pomocí Intelligent Insights.
Analýza původní příčiny Analýza původní příčiny problému identifikovaného ve formátu čitelného pro člověka Některé přehledy můžou obsahovat doporučení ke zlepšení výkonu, pokud je to možné.

Inteligentní přehledy svítí při zjišťování a řešení potíží s výkonem databáze. Pokud chcete použít Intelligent Insights k řešení potíží s výkonem databáze, přečtěte si téma Řešení potíží s výkonem služby Intelligent Insights.

Možnosti Intelligent Insights

K dispozici jsou možnosti Intelligent Insights:

Možnost Inteligentní přehledy Podpora služby Azure SQL Database Podpora služby Azure SQL Managed Instance
Konfigurace Inteligentních přehledů – Konfigurace analýzy Intelligent Insights pro vaše databáze Ano Ano
Streamování přehledů do Azure SQL Analytics – Streamování přehledů do Azure SQL Analytics Ano Ano
Streamování přehledů do služby Azure Event Hubs – Streamování přehledů do služby Event Hubs pro další vlastní integrace Ano Ano
Streamování přehledů do Azure Storage – Streamování přehledů do Služby Azure Storage pro další analýzu a dlouhodobou archivaci Ano Ano

Poznámka:

Inteligentní přehledy jsou funkce Preview, která není dostupná v následujících oblastech: Západní Evropa, Severní Evropa, USA – západ 1 a USA – východ 1.

Nakonfigurujte export protokolu Intelligent Insights

Výstup inteligentních poznatků je možné streamovat do jednoho z několika cílů pro analýzu:

  • Výstup streamovaný do pracovního prostoru Služby Log Analytics je možné použít s Azure SQL Analytics k zobrazení přehledů prostřednictvím uživatelského rozhraní webu Azure Portal. Toto je integrované řešení Azure a nejběžnější způsob zobrazení přehledů.
  • Výstup streamovaný do služby Azure Event Hubs se dá použít pro vývoj vlastních scénářů monitorování a upozorňování.
  • Výstup streamovaný do Služby Azure Storage se dá použít pro vývoj vlastních aplikací pro vlastní vytváření sestav, dlouhodobé archivace dat atd.

Integrace služeb Azure SQL Analytics, Azure Event Hubs, Azure Storage nebo produktů třetích stran ke spotřebě se provádí tak, že nejprve povolíte protokolování Intelligent Insights (protokol SQLInsights) na stránce Nastavení diagnostiky databáze a potom nakonfigurujete data protokolu Intelligent Insights tak, aby se streamovala do jednoho z těchto cílů.

Další informace o tom, jak povolit protokolování Intelligent Insights a nakonfigurovat data protokolů metrik a prostředků pro streamování do spotřebovaného produktu, najdete v tématu Metriky a protokolování diagnostiky.

Nastavení pomocí Azure SQL Analytics

Řešení Azure SQL Analytics poskytuje grafické uživatelské rozhraní, možnosti generování sestav a upozorňování o výkonu databází, s využitím dat protokolu prostředků Intelligent Insights.

Přidání Azure SQL Analytics na řídicí panel webu Azure Portal z marketplace a vytvoření pracovního prostoru najdete v tématu Konfigurace Azure SQL Analytics.

Pokud chcete používat Intelligent Insights s Azure SQL Analytics, nakonfigurujte data protokolu Intelligent Insights tak, aby se streamovala do pracovního prostoru Azure SQL Analytics, který jste vytvořili v předchozím kroku, viz Protokolování metrik a diagnostiky.

Následující příklad ukazuje Inteligentní přehledy zobrazené prostřednictvím Azure SQL Analytics:

Zpráva Intelligent Insights

Nastavení se službou Event Hubs

Pokud chcete používat Inteligentní přehledy se službou Event Hubs, nakonfigurujte data protokolu Intelligent Insights tak, aby se streamovala do služby Event Hubs, podívejte se na metriky a diagnostické protokolování a streamování diagnostických protokolů Azure do služby Event Hubs.

Pokud chcete službu Event Hubs použít k nastavení vlastního monitorování a upozorňování, přečtěte si téma Co dělat s metrikami a diagnostickými protokoly ve službě Event Hubs.

Nastavení se službou Azure Storage

Pokud chcete používat Inteligentní přehledy se službou Storage, nakonfigurujte data protokolů Intelligent Insights tak, aby se streamovala do úložiště. Další informace najdete v části Metriky a diagnostické protokolování a Streamování do Azure Storage.

Vlastní integrace logu Intelligent Insights

Pokud chcete používat Intelligent Insights s nástroji třetích stran nebo pro vlastní vývoj pro upozorňování a monitorování, přečtěte si téma Použití protokolu diagnostiky výkonu databáze Intelligent Insights.

Metriky detekce

Metriky používané pro modely detekce, které generují Intelligent Insights, jsou založené na monitorování:

  • Doba trvání dotazu
  • Žádosti o vypršení časového limitu
  • Nadměrná doba čekání
  • Požadavky, u kterých došlo k chybám

Požadavky na dobu trvání dotazu a vypršení časového limitu se používají jako primární modely při zjišťování problémů s výkonem úloh databáze. Používají se, protože přímo měří, co se děje s pracovní zátěží. K detekci všech možných případů snížení výkonu úloh se jako další modely používají nadměrné požadavky na čekání a chybné požadavky, které indikují problémy, které mají vliv na výkon úloh.

Systém automaticky bere v úvahu změny ve zátěži a změny v počtu požadavků dotazů do databáze, aby dynamicky určoval normální a neobvyklé prahové hodnoty výkonu databáze.

Všechny metriky jsou zvažovány společně v různých relacích s pomocí vědecky odvozeného datového modelu, který kategorizuje každý zjištěný problém výkonnosti. Mezi informace poskytované prostřednictvím inteligentního přehledu patří:

  • Byly zjištěny podrobnosti o problému s výkonem.
  • Byla zjištěna analýza původní příčiny problému.
  • Doporučení týkající se zlepšení výkonu monitorované databáze, pokud je to možné.

Doba trvání dotazu

Model snížení doby trvání dotazu analyzuje jednotlivé dotazy a zjišťuje nárůst doby potřebnou ke kompilaci a spuštění dotazu v porovnání se standardními hodnotami výkonu.

Pokud předdefinované inteligentní funkce zjistí významné zvýšení doby kompilace dotazů nebo spouštění dotazů, které mají vliv na výkon úloh, označí se tyto dotazy jako problémy s snížením výkonu doby trvání dotazu.

Protokol diagnostiky Intelligent Insights vypíše hodnotu hash dotazu, jehož výkon se zhoršil. Hodnota hash dotazu označuje, jestli snížení výkonu souviselo se zvýšením doby kompilace dotazu nebo doby provádění, což zvýšilo dobu trvání dotazu.

Žádosti o vypršení časového limitu

Model snížení časového limitu požadavků analyzuje jednotlivé dotazy a detekuje jakékoli zvýšení časových limitů na úrovni provádění dotazu a celkové časové limity požadavků na úrovni databáze v porovnání s obdobím standardního výkonu.

Některé dotazy mohou vypršet ještě dříve, než se dostanou do fáze vykonávání. Prostřednictvím přerušených úloh a požadavků vestavěné inteligentní míry analyzují všechny dotazy, které byly doručeny do databáze, nehledě na to, zda dosáhly fáze provádění či nikoli.

Po uplynutí časového limitu pro spuštěné dotazy nebo počtu přerušených požadovaných pracovních procesů překročí prahovou hodnotu spravovanou systémem, naplní se diagnostický protokol inteligentními přehledy.

Vygenerované přehledy obsahují počet žádostí o vypršení časového limitu a počet dotazů s časovým limitem. Indikace snížení výkonu souvisí se zvýšením časového limitu ve fázi provádění nebo se poskytuje celková úroveň databáze. Pokud se zvýšení časových limitů považuje za významné pro výkon databáze, tyto dotazy se označí jako problémy se snížením výkonu časového limitu.

Nadměrné doby čekání

Model nadměrné doby čekání monitoruje jednotlivé databázové dotazy. Zjistí neobvykle vysoké statistiky čekání dotazů, které překročily absolutní prahové hodnoty spravované systémem. Následující metriky nadměrné doby čekání byly pozorovány pomocí statistik čekání úložiště dotazů (sys.query_store_wait_stats):

  • Dosažení limitů prostředků
  • Dosažení limitů prostředků elastického fondu
  • Nadměrný počet pracovních nebo relačních vláken
  • Nadměrné uzamčení databáze
  • Přetížení paměti
  • Další statistiky čekání

Dosažení limitů prostředků nebo limitů prostředků elastického fondu značí, že spotřeba dostupných prostředků v předplatném nebo v elastickém fondu překročila absolutní prahové hodnoty. Tyto statistiky označují snížení výkonu úloh. Nadměrný počet pracovních vláken nebo relací označuje podmínku, ve které počet pracovních vláken nebo relací iniciovaných překročil absolutní prahové hodnoty. Tyto statistiky označují snížení výkonu úloh.

Nadměrné uzamčení databáze označuje podmínku, ve které počet zámků v databázi překročil absolutní prahové hodnoty. Tato statistika označuje snížení výkonu pracovní zátěže. Zatížení paměti je podmínka, ve které počet vláken žádajících o paměť překročí absolutní prahovou hodnotu. Tato statistika naznačuje snížení výkonu pracovní zátěže.

Detekce dalších statistik čekání označuje podmínku, ve které různé metriky měřené prostřednictvím statistik čekání úložiště dotazů překročily absolutní prahovou hodnotu. Tyto statistiky označují snížení výkonu úloh.

Po zjištění nadměrné doby čekání, v závislosti na dostupných datech, protokol diagnostiky Intelligent Insights vypíše hodnoty hash dotazů způsobujících a dotazů ovlivněných se sníženým výkonem, detailní informace o metrikách způsobujících, že dotazy čekají na provedení, a naměřenou dobu čekání.

Chyby požadavků

Model monitorování degradace chybných požadavků sleduje individuální dotazy a detekuje zvýšení počtu dotazů, které vykazovaly chyby ve srovnání se základním obdobím. Tento model také monitoruje kritické výjimky, které překročily absolutní prahové hodnoty spravované integrovanou inteligencí. Systém automaticky bere v úvahu počet požadavků na dotazy provedených v databázi a zaúčtuje všechny změny úloh v sledovaném období.

Pokud se naměřené zvýšení chybných požadavků vzhledem k celkovému počtu provedených požadavků považuje za významné pro výkon úloh, ovlivněné dotazy se označí jako problémy s chybným snížením výkonu požadavků.

Záznam Intelligent Insights zobrazí počet chybujících požadavků. Označuje, jestli snížení výkonu souviselo se zvýšením chybných požadavků nebo překročením prahové hodnoty monitorované kritické výjimky a měřeným časem snížení výkonu.

Pokud některá z monitorovaných kritických výjimek překročí absolutní prahové hodnoty spravované systémem, vygeneruje se inteligentní přehled s podrobnostmi o kritických výjimkách.

Další kroky